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ABSTRACT 

We investigate several techniques that partition a crowded 
virtual environment into regions that can be managed by 
separate servers or mapped onto different multicast groups. 
When constructing a partitioning, we attempt to minimize 
overhead of the partitioning with respect to network 
management, whilst maintaining a bound on the number of 
entities that are mapped to any particular server or group. 

We compare several partitioning schemes: quad tree, k-d tree 
unconstrained, k-d tree constrained, and region growing. With 
our simulations of a crowded virtual environment modelled on 
a part of central London, we find that the region growing 
technique give the best overall results.  

Keywords 
Distributed virtual environments, spatial partitioning, multicast 
groups. 

1 INTRODUCTION 
Collaborative virtual environments are becoming more popular 
especially for entertainment purposes. However the number of 
participants in an environment is often limited by the 
environment’s being supported by a single server. In this paper 
we investigate schemes that utilize usage data of a virtual 
environment in order to generate a static world partitioning so 
that multiple servers may be deployed effectively.  

Many researchers have looked at the problems of area of 
interest management and spatial partitioning (see Section 2). 
However these have mostly used regular partitionings of the 
virtual world. In this paper we ask a slightly different question: 
if we have a record or a prediction of aggregate behaviour of 
participants in a virtual world, how best can we plan to serve 
those participants in terms of minimizing participant, server 
and network costs?  

Using recorded activity data we build a partitioning using a top-
down or bottom-up approach. We then analyze the effectiveness 
of the different partitioning strategies under different resource 

requirements. The main requirement that we will try to meet is 
that servers must not get overloaded. If we can meet this 
requirement, then obviously we prefer schemes that require 
fewer servers. However we also note, as do Zou et al. [16], that 
there are significant run-time costs in the handover of a 
participant from one server to another. These may include the 
dynamic allocation of resources, resource reservation, routing 
changes and so on.  

2 RELATED WORK 

2.1 Area of Interest Management 
Although the single server/multiple client model of distributed 
virtual environments provides a well-understood and robust 
way of implementing today’s virtual environments (e.g. 
[12][13]), it has an obvious limitation in that the number of 
participants has to be capped to ensure stability. This capping is 
necessary due to the finite nature of server, client and network 
resources. 

The primary way in which scalability is achieved is to perform 
area of interest (AOI) management. An AOI management 
scheme considers the potential level of interest of each 
participant towards all other participants (e.g. [10]).  

Typical interest relationships might be, Participant A is 
interested in Participant B, if: 

• The distance from A to B is under some threshold, 

• A can see B, 

• A and B are performing similar tasks. 
There are embodiments of such schemes in many current 
collaborative virtual environment systems. 

There are many different ways of realizing such interest 
schemes. The ideal is to perform an exact partitioning with 
respect to the interest set, where the participant receives all and 
only those events that are of interest. However, if there are N 
participants there are O(N2) such potential interest 
relationships to consider and thus this calculation can become 
prohibitively expensive. Therefore implementations usually 
provide a conservative partitioning scheme where a super-set 
of the necessary events is delivered. For example, although a 
participant’s AOI rule might be that they are interested in all 
events that occur within a 5km geographical area, the 
underlying system might actually contain a hexagonal 
representation of space and the participant actually receive all 
events from all cells that overlap that 5km interest. The 
NPSNET system was based around such a mechanism [10]. 

 
 



2.2 Spatial Partitions 
The limitation of such regular partitionings is that since they 
are defined a priori, they don’t reflect how participants will 
actually use the space. Certain regions might be very crowded 
and thus they become failure points at run-time. A solution 
would be to locally refine the regular partition or add sub-
regions at run-time. In [4], Farcet et al. analyze a dynamic oc-
tree partitioning scheme that adapts to the actual clustering of 
entities in the world. However maintaining world consistency 
with such a scheme would be difficult under real-world 
conditions.  

One limitation of AOI management as described so far, is that 
it is not reactive to load, but is an ideal relationship. Given that 
either the client, server or network still might suffer from 
overload, either the client AOI rules must adapt or the AOI 
resolution system must relieve the load by adding extra 
constraints, relaxing the satisfaction criteria by scaling regions 
of interest down, or in the worst case simply randomly dropping 
information. We call these approximate partitionings.  

2.3 Network Architectures 
The capabilities of an AOI management scheme are strongly 
tied to the network architecture underlying it. Although AOI 
management can be used on a single server to minimize 
network load and client load, once server load becomes the 
bottleneck, different architectures need to be investigated. 

Two primary architectures have been investigated in previous 
work: peer networks and multiple servers systems. A peer 
network certainly alleviates any server bottleneck, but now each 
client needs to perform an AOI interest calculation. Here in lies 
a catch: in order to make the AOI calculation it will need to 
know at least some information about all the other clients. In 
order to avoid this calculation becoming a bottleneck, one 
technique is to have a partitioning scheme that is built into the 
description of the environment, with this scheme mapping gross 
interest onto multicast groups. In the NPSNET system, the 

space was partitioned into hexagonal cells, and each cell was 
associated with a multicast group. A participant would send 
data to the multicast group of the cell they were located in, but 
would receive data from all the multicast groups for the cells 
overlapping its AOI.  

Multiple server systems are an alternative. These place the 
responsibility for AOI management on a set of powerful servers 
that have good interconnections. With the RING system, 
Funkhouser has investigated two schemes [6]. The first 
allocates a server to a group of participants. The servers 
aggregate the AOIs of their clients, and inter-server 
communication is limited to the information necessary to satisfy 
the aggregate AOI. The second scheme allocates servers to 
regions of the environment. In this scheme, participants connect 
to the server that maintains the region they are interested in, 
and must switch servers when they reach the region boundary.  

Several variations on AOI management schemes can be found 
in the literature. The separation between logical AOI 
management and implementation is made concrete in Abram’s 
three-tiered architecture [1]. The MASSIVE systems have a 
very flexible AOI management system with dynamic adaptation 
of partitionings and high-level description of AOI relationships 
[3]. The Diamond Park system uses a beacon service to 
discover multicast regions [2]. The DIVE system places the 
multicast partitioning scheme under the control of a scripting 
language, making dynamic partitioning dependent on object 
behaviours as well as simple spatial partitions [7][5].  

2.4 Cost of Partitioning 
Any AOI management scheme that uses partitions suffers an 
overhead in the cost of managing that partition. For example, 
joining or leaving multicast groups is an operation that takes 
time and network resources. Switching servers similarly 
requires a potentially expensive re-allocation of network and 
server resources. 

In [16], Zou et al. phrase the partitioning problem as the 
minimization of inter-server transfers. They break down the 
environment into a coarse grid of N squares. They then build a 
simulation where there is a known likelihood of a participant 
transitioning between adjacent cells in the grid. From this they 
try to partition the space into a fixed number (M, where M < N) 
of server-managed regions, where the number of transitions of 
participants is minimized.  

3 PROCESS OVERVIEW 
From the discussion in Section 2, we believe that although 
spatial partitioning schemes have been widely discussed, 
implementations rarely take in to account how the space will 
actually be used. If a summary or prediction of usage patterns of 
a space is available, then we can attempt to optimize the 
partitioning scheme to generate a set of regions that will better 
satisfy future usage patterns. 

We have taken a hypothetical case based on pedestrian activity 
in a part of central London (see Figure 1). This is based on a 
real world monitoring of pedestrian flows along certain 
segments of pavement. It is an interesting data-set because it 

 

Figure 1 Observed relative density of pedestrians 
around Regents St in central London (ObsWalkers). 

Areas coloured black are the most densely populated. 

 



has a large range of densities – many people walk up and down 
Regents St, but few make their way on to Brewer St. 
Unfortunately we do not have actual records of individuals’ 
behaviour. In the situation of an online game we might expect 
to have complete logs of player location over the lifetime of the 
game.  

The actual pedestrian data was limited in extent, so for our 
tests we augmented it with pavement and road information 
from UK Ordnance Survey databases by giving each un-
monitored pavement and road a default pedestrian flow. Figure 
1 illustrates the aggregate pedestrian as density ratios. Values 
of 0 (black) imply most dense, values of 1 (white) imply no 
occupancy. 

We can use this density map to make a region partitioning 
using a number of processes (see the following Section). 
However there is a limitation with this data – because we 
cannot track actual people in this space, we must build a 
simulation of pedestrian behaviour. Modelling of crowd 

behaviour in the real world at the individual agent level is an 
open problem [11]. For these experiments we have used a very 
crude crowd model (see Section 5). This occasionally produces 
some un-natural behaviours, and agents in the simulation can 
get “stuck” for short periods in cycles within the map.  

Thus we have produced a second set of results, using a density 
map resulting from the simulated crowds (see Figure 2). We 
will refer to the observed and predicted data in Figure 1 as 
ObsWalkers, and to the simulated data  in Figure 2 as 
SimWalkers.  

We have assumed that there will usually be a target number of 
participants for each server and that this is the same across all 
servers. The main cost of partitioning the space will then be in 
the handover between servers, and it is the number of 
handovers that needs to be minimized. We are not attempting to 
dynamically partition the world.  

The process thus consists of the following steps: 

1. Creation of ObsWalker data 

2. Simulation of SimWalker data 

3. Partitioning of ObsWalker data with threshold T 

4. Testing of partitioning of ObsWalker with N agents 

5. Partitioning of SimWalker data with threshold T 

6. Testing of partitioning of SimWalker with N agents 

Steps 3-6 are repeated for four partitioning schemes and 
different values of T and N. In Section 4 we discuss the 
partitioning schemes and in Section 6 we discuss strategies and 
experiments with varying T and N. 

4 PARTIONING SCHEMES 
The crowd density maps are relative densities between 0 and 1. 
In this simulation we have used an 8-bit value and interpolated 
linearly between 0 and 1 for the density. We do not know the 
number of people in a crowd or the time-step of the simulation, 
and thus densities cannot be directly interpreted as an 

 

Figure 2 Simulated pedestrian flows around Regents St 
in central London (SimWalkers). Areas coloured black 

are the most densely populated. 
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Figure 3 Example partitionings of ObsWalkers. (a) Quad Tree partitioning giving 212 regions (b) K-D tree unconstrained 
partitioning giving 128 regions (c) K-D tree constrained partitioning giving 130 regions (d) Irregular region partitioning     

giving 162 regions  



expectation that a particular cell will be occupied in a time 
period.  

To partition the model, we use a threshold value where the sum 
of the relative densities of a region should be less than the 
threshold. As we will see in Section 6, it is difficult to choose a 
threshold to achieve a particular constraint such as “in a 
simulation of X agents, no more than Y% of the time will more 
than Z agents be occupying any one server”. 

It is also difficult to predict the geometric properties that a good 
partitioning should have. Given a particular threshold 
constraint, if there are fewer regions in a partitioning, the 
average region density will closer to the target threshold. 
Obviously servers with a higher relative density have a greater 
probability of becoming overloaded. This must be traded off 
against the number of servers and the minimization of server 
handovers. At first glance this suggests that a partitioning 
where minimization of the total region boundary length might 
be an additional constraint. We have attempted to investigate 
these issues by experimentation and will discuss this further in 
Section 6.  

There are two main approaches to partitioning: top-down 
approaches that recursively split the world until regions satisfy 
the threshold constraint, and bottom-up approaches where 
regions are grown iteratively. The Quad Tree (Section 4.1) and 
both K-d Tree (Sections 4.2 and 4.3) algorithms are examples 
of top-down. The Region Growing (Section 4.4) is bottom-up. 

4.1 Quad Tree 
The first partitioning uses a quad-tree partitioning scheme. The 
relative density for a region is calculated, and if greater than the 
threshold the region is quartered and the process repeats. The 
algorithm is started by setting the initial region to the whole 
space. Figure 3(a) illustrates a partitioning on the ObsWalkers 
data with a threshold of 350 that generates 212 regions. In the 
figure the regions are coloured randomly for the purposes of 
illustration. For the quad tree and the k-d tree algorithms 
described below it is possible that after the partitioning some 
regions will have a relative density of zero. These are not 
counted and are removed from the simulation 

4.2 K-d Tree Unconstrained 
This is another top-down algorithm. The relative density of a 
region is calculated and if it is greater than the threshold the 
region is dissected by a horizontal or vertical line. The line of 
dissection is chosen so that the two regions have as close to 
equal total relative density as possible. Splits are made 
alternately in the horizontal and vertical directions. The 
algorithm is started by setting the initial region to the bounding 
box of whole space. Figure 3(b) illustrates a partitioning on the 
ObsWalkers data with a threshold of 350 resulting in 128 
regions. Note that there are many long, thin regions. 

4.3 K-d Tree Constrained 
Very thin regions are potentially problematic when the aim is to 
minimize the number of handovers between regions. This is 
especially the case with the Regents Street data where there are 

no roads following cardinal directions. Thus the K-d tree 
constrained algorithm additionally specifies that no region will 
have one edge longer than a given multiple of the other edge. 
This is implemented in the recursion by constraining the axis of 
the line of dissection and also the positioning of that line. This 
means that a particular split may not result in close to equal 
total relative densities in the two newly created regions. Figure 
3(c) illustrates a partitioning on the ObsWalkers data with a 
threshold of 350 resulting in 130 regions. The allowed ratio of 
edge lengths in this example was 3. See [8] for a general 
analysis of K-d tree partitioning schemes. 

4.4 Region Growing 
The region growing technique is a variation of standard image 
processing algorithms for image partitioning. It starts from a 
seed point and adds adjacent points until a threshold is reached. 
The first naïve implementation uses a simple flood fill style 
algorithm. Once the threshold is reached, a new seed point is 
chosen. We prefer seed points that are close to the centre of 
mass of completed regions, and have high relative density. Due 
to the complex structure of the road system in this model, this 
results in very uneven distribution of region sizes, with many 
cells with small relative density.  

A revised algorithm grows regions until they are within a 
certain percentage of the threshold. A second pass then 
aggregates small regions onto larger adjacent regions. We have 
found that aiming for 90% of the threshold in the first pass 
gives good results. Figure 3(d) illustrates a partitioning on the 
ObsWalkers data with a threshold of 350 resulting in 162 
regions.  

5 CROWDING SIMULATIONS 
We based our crowd simulation work on the system of Techia 
et al. [14][15]. This system can simulate and render crowds 
comprising 1000s of human figures at interactive frame rates. 
The first component of the system is an image-based rendering 
of virtual humans. The use of image-based rendering reduces 
the detail needed for a humanoid to one or two polygons with 
multiple textures. The second component is the simulation of 
crowd behaviour that uses a number of short-cuts in order to be 
able to achieve real-time performance. 

Each simulated humanoid, or agent, must collide with objects 
in the environment, avoid other agents and have a simple state-
machine for navigation strategy. In the simulations run in this 
paper, agents have no high-level control. Later and separate 
versions of the system have incorporated agent strategies where 
the overall aggregate behaviour better correlates with actual 
observed behaviours [11]. Integration of more complex, perhaps 
non-real-time agent behaviours into our network simulations 
remains future work. Thus, as Section 6 will discuss, we have 
performed partitionings based on both observed and simulated 
crowd data. 

Collision detection and avoidance are done using a 
discretisation of the space. In the system described in [14][15], 
a 2D collision map is extracted from the Z-buffer of a parallel 
projection rendering of the target model from a viewpoint above 
and looking straight down at the model. This collision map 



allows agents to walk over small steps. Since we only require 
planar movement, we can simply use the density maps as 
shown in Figures 1&2, and restrict agents to walking on non-
white pixels. Collision between agents is avoided by each 
agent’s temporarily altering the 2D collision map to indicate 
the squares immediately adjacent to the square they are in are 
occupied. Thus, as agents move around the model they read and 
write collision information into this collision map.  

Note that our simulation is derived from the crowd system in 
[14], and does not support the advanced rendering and 
occlusion features of later systems [15]. 

6 ANALYSIS 
There are three aspects to the analysis. Firstly we look at 
typical partitioning results for a fixed threshold and compare 
region counts and region sizes. Secondly we analyze a 
particular situation where the threshold is constant. We look at 
the four partitioning schemes, and investigate how they perform 
with both density maps. Thirdly we investigate how to tackle 
typical server reliability problems in more depth. 

6.1 Partitioning Behaviour 
Figure 3 gave examples of partitioning to a given threshold for 
the ObsWalker data set. Table 1 shows the corresponding 
region counts for each partitioning method for both data sets. 

 

 
Quad 
Tree 

K-d Tree 
Unconstrained 

K-d Tree 
Constrained 

Region 
Growing 

ObsWalker 212 128 130 120 

SimWalker 232 128 129 143 

Table 1 Region counts for the two data sets under different 
partitioning with threshold of 350 

 

The base map measures 793x1023 pixels and 35% of the area 
is walkable in the ObsWalker data set. After the simulation we 
find that the agents reach each pixel in that map. The threshold 
relative density is 350. With the Quad Tree approaches we 
would expect that our smallest region would have 350/4 pixels. 
That is it resulted in a split of a region that was just above the 
threshold. Similarly for the K-d tree we would expect 350/2. 
Ideally with the Region Growing we would expect our 
minimum region size to be 350, but we will find smaller 
regions because of the difficulties in tiling together regions in a 
complex map.  

Figure 4 gives the region size frequency for each partitioning. 
The categories refer to a range of cell sizes, with each category 
covering double the range of the previous one. We can see that 
the constraint on region length imposed on Kd-Tree has little 
effect on neither number nor spread of region size.  

6.2 Fixed Threshold Condition 
Once the partitioning has been made, we run simulations to 
assess how many handovers between regions there are and to 
determine typical cell density patterns. 

Table 2 shows the number of handovers in a simulation with 
1000 agents running over a 2000 step simulation period. The 
ranking of each partitioning is the same in each case, with 
Region Growing generating the smallest number of handovers. 
The difference between the best and worst is not that 
significant, being a matter of 20% or 10% difference. Notably, 
as was found in Table 1, the Quad Tree had many more cells 
than the others. The other techniques generated roughly the 
same number of cells on average. 

 

 

Cell size distribution in ObsWalker partitioning 
with threshold of 350
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Figure 4 Cell size distributions for the two data sets with 
threshold of 350 

 



 Quad 
Tree 

K-d Tree 
Unconstrained 

K-d Tree 
Constrained 

Region 
Growing 

ObsWalker 19800 18938 17693 15766 

SimWalker 20797 19188 18551 18145 

Table 2 Handover counts for the two data sets under 
different partitionings with threshold of 350 

 

A more in-depth picture of what is happening is shown in 
Figure 5. This shows a summary across all servers and time-
steps of how often a particular agent count was reached. We 
can see that the Quad Tree has fewer agents per cell as there 
are many more cells. The Region Growing technique has some 
cells with relatively few agents but the spread is also greater. 
The maximum number of agents in a cell was 30 in the Region 
Growing partitioning of the ObsWalkers data set. This 
happened 16 times over 120 regions, over 2000 time-steps (i.e. 
0.0066% of the time). 

 Quad 
Tree 

K-d Tree 
Unconstrained 

K-d Tree 
Constrained 

Region 
Growing 

ObsWalker 99.1 97.9 97.8 95.2 

SimWalker 99.8 99.2 99.3 99.3 

Table 3 Percentage of server/time-steps with 16 or fewer 
agents 

Table 3 shows the percentage of servers/time-steps with 16 or 
fewer agents. This suggests that when the simulation does not 
fit the prediction (ObsWalker), Region Growing techniques 
gives a partitioning where regions have a higher likelihood of 
being congested. In this case on average 4.8% of servers were 
overloaded at any one time-step, whereas the Quad Tree, with 
roughly twice as many regions, gave an overload rate of only 
0.9%. With the SimWalker data the K-d tree and Region 
growing algorithms perform roughly equally. In this situation 
the simulation behavior is following the density that was input 
into the partitioning. 

6.3 Reliability Target 
The previous two sections demonstrate the numbers of cells and 
number of handovers that can be expected. However, what is 
more pertinent when designing a real system is how many 
regions in each partitioning would be necessary to meet a 
particular reliability condition, and how many handovers would 
be produced?  

We will look at two scenarios using the ObsWalker data: 

1. 1000 participants are to be supported. The target 
server capacity is 16. A reliability of 95% is required 

2. 4000 participants are to be supported. The target 
server capacity is 128. A reliability of 90% is 
required. 

6.3.1 Scenario 1 

The use of the threshold is quite a crude device for selecting 
number of regions. We find that increasing the threshold from 
330 through 410 in 8 steps does not change the number of Kd-
Tree regions with remained at roughly 128 regions. The Quad 
Tree does change size, but the total number of nodes remains 
high. At thresholds 330-410, each of these three algorithms 
performs in the range 97-99% reliability. At a threshold of 590 
the number of cells in each of these methods has roughly halved 
(121, 64, 66 respectively), but the reliability of the Quad Tree 
remains high and the Kd-Tree algorithms have dropped below 
90%.  
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Figure 5 Server usages presented as cumulative percentage 



The Region Growing performs very differently producing 
different number of regions (see Figure 6).  Lack of space 
prevents our including complete details, but we are able to get 
reliability close to 95% with a threshold of 360 producing 117 
regions. During the simulation this generates 17340 region 
handovers. This compares well with the results for Quad Tree 
and Kd-Tree. Thus the Region Growing provides a lower 
number of handovers and lower number servers for the required 
reliability. The main observation is that Region Growing 
provides greater flexibility to meet different targets. 

6.3.2 Scenario 2 

Figure 7 shows an analysis for Scenario 2. Again we see the 
features discussed in Section 6.3.1. The Quad Tree provides a 
range of regions sizes under the various thresholds. We see the 
drop in region count with the two K-d Tree algorithms. With 
the Kd-Tree algorithms we subsequently see a large drop in 
reliability. With the Region Growing technique we can select 
close to 90% reliability by taking a threshold of 980 giving 40 
nodes. The best we can do with a Kd-Tree is a much better 
reliability of 98% with 62 nodes, and with the Quad-Tree 
algorithm, a reliability of 89.5% with 55 nodes. Again this 
shows the greater flexibility of Region Growing. 

7 DISCUSSION AND CONCLUSIONS 
We have examined the performance of four types of spatial 
partitioning in supporting large numbers of participants in a 
virtual environment. Specifically, we are trying to support more 
participants that can be allocated to a single server. We have 
taken as our case study, a hypothetical system that supports a 
number of participants visiting a virtual model of a part of 
central London. Because we do not have tracking data from 
individuals we have had to rely on a simulated crowd within 
this environment. However we did have some knowledge about 
the actual use of the real space by pedestrians and we 
incorporated that into a prediction of the use of space. 

Throughout our analysis we compared the prediction of space 
usage with the usage of the space by the simulation. This re-
assures us that predicted usage forms a good basis for 
development of a spatial partitioning. However a shortcoming 
is that the crowd simulation model is not a good representation 
of actual human behaviour. We do not simulate the effects of 
points of interest in the model, nor temporal properties, such as 
commuting. In our model we have also assumed that virtual 
participants will walk with similar speeds and in the same 
places as real pedestrians. Of course, for proper application to a 
virtual world either real usage data will be needed or a better 
simulation model of participant behaviour. 

Our goal for the analysis was to investigate properties of the 
partitionings and also to attempt to find procedures for 
generating partitionings that could meet reliability criteria. The 

Scenario 1: Occurence of 16 or fewer agents for 
various Region Growing partitionings in a 1000 

agent simulation
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Figure 6 Graphs of reliability in Scenario 1 

Scenario 2: 
Region Counts for Thresholds
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Figure 7 Graphs of region count and reliability for    
Scenario 2 



first reliability criterion was a limit on the number of 
participants on a server. It is easy to generate partitionings that 
meet this criterion by creating many regions, but this both 
increases the number of servers or network groups that must be 
provisioned and increases the likelihood of a participant having 
to move between servers incurring significant run-time 
resources. Thus a partitioning must attempt to meet the 
participant limit but minimize the number of servers and the 
number of handovers. In Section 6 we found that a Region 
Growing technique can better satisfy the various requirements 
of a networked server system than a Quad Tree or K-d Tree 
based algorithm. We hypothesize that the Region Growing 
technique is better because, by the nature of the construction 
mechanism, it tends follows the likely connections between 
dense areas. In the other techniques, regions are rectangles and 
a single region might contain a number of disjoint navigable 
areas. For example, a region could contain two parallel streets 
where it isn’t possible to travel between the two streets without 
exiting the region. This means that, other things being equal, 
the likelihood that the participant will leave the cell within a 
short time period will be higher with these regular 
partitionings. 

Our usage of predicted models of behaviour as the basis for the 
ObsWalker data set was inspired by the analytic techniques of 
space syntax, where usage of space by pedestrians can be 
derived from analysis of configuration and connectivity of the 
real urban fabric [9]. In future work we hope to extend and 
apply such techniques to the prediction of usage of more 
abstract virtual worlds. Although the partitioning techniques 
have been developed for a London-based scenario, they are 
applicable to any type of environment. For more open 
environments, one of the regular partitioning schemes may as 
efficient as the Region Growing, but we expect that with 
environments with complex topologies of participant behaviour, 
an irregular partitioning such as Region Growing would prove 
superior.  More complex worlds involving 3D structures would 
require different discretisations of space, but we would expect 
that the Region Growing strategy would still be productive 
across such discretisations. 

Finally, we have assumed a static partitioning scheme since it 
is easy to configure and it is reliable since the maintenance of 
the partitioning itself requires no server overhead or network 
traffic. However such a scheme will not work if participant 
numbers or usages of space change dramatically. If overall 
numbers or congestion in a particular region rises then regions 
could be dynamically split, but this re-introduces the problem 
of dynamically adding servers to a running system. However we 
have seen that a small subset of the servers might be relatively 
under-loaded so regions might dynamically created, but then 
allocated to currently under-utilized machines. 
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