
Partitioning Crowded Virtual Environments

Anthony Steed, Roula Abou-Haidar
Department of Computer Science, University College London

Gower St, London, WC1E 6BT, United Kingdom
A.Steed@cs.ucl.ac.uk

ABSTRACT

We investigate several techniques that partition a crowded
virtual environment into regions that can be managed by
separate servers or mapped onto different multicast groups.
When constructing a partitioning, we attempt to minimize
overhead of the partitioning with respect to network
management, whilst maintaining a bound on the number of
entities that are mapped to any particular server or group.

We compare several partitioning schemes: quad tree, k-d tree
unconstrained, k-d tree constrained, and region growing. With
our simulations of a crowded virtual environment modelled on
a part of central London, we find that the region growing
technique give the best overall results.

Keywords
Distributed virtual environments, spatial partitioning, multicast
groups.

1 INTRODUCTION
Collaborative virtual environments are becoming more popular
especially for entertainment purposes. However the number of
participants in an environment is often limited by the
environment’s being supported by a single server. In this paper
we investigate schemes that utilize usage data of a virtual
environment in order to generate a static world partitioning so
that multiple servers may be deployed effectively.

Many researchers have looked at the problems of area of
interest management and spatial partitioning (see Section 2).
However these have mostly used regular partitionings of the
virtual world. In this paper we ask a slightly different question:
if we have a record or a prediction of aggregate behaviour of
participants in a virtual world, how best can we plan to serve
those participants in terms of minimizing participant, server
and network costs?

Using recorded activity data we build a partitioning using a top-
down or bottom-up approach. We then analyze the effectiveness
of the different partitioning strategies under different resource

requirements. The main requirement that we will try to meet is
that servers must not get overloaded. If we can meet this
requirement, then obviously we prefer schemes that require
fewer servers. However we also note, as do Zou et al. [16], that
there are significant run-time costs in the handover of a
participant from one server to another. These may include the
dynamic allocation of resources, resource reservation, routing
changes and so on.

2 RELATED WORK

2.1 Area of Interest Management
Although the single server/multiple client model of distributed
virtual environments provides a well-understood and robust
way of implementing today’s virtual environments (e.g.
[12][13]), it has an obvious limitation in that the number of
participants has to be capped to ensure stability. This capping is
necessary due to the finite nature of server, client and network
resources.

The primary way in which scalability is achieved is to perform
area of interest (AOI) management. An AOI management
scheme considers the potential level of interest of each
participant towards all other participants (e.g. [10]).

Typical interest relationships might be, Participant A is
interested in Participant B, if:

• The distance from A to B is under some threshold,

• A can see B,

• A and B are performing similar tasks.
There are embodiments of such schemes in many current
collaborative virtual environment systems.

There are many different ways of realizing such interest
schemes. The ideal is to perform an exact partitioning with
respect to the interest set, where the participant receives all and
only those events that are of interest. However, if there are N
participants there are O(N2) such potential interest
relationships to consider and thus this calculation can become
prohibitively expensive. Therefore implementations usually
provide a conservative partitioning scheme where a super-set
of the necessary events is delivered. For example, although a
participant’s AOI rule might be that they are interested in all
events that occur within a 5km geographical area, the
underlying system might actually contain a hexagonal
representation of space and the participant actually receive all
events from all cells that overlap that 5km interest. The
NPSNET system was based around such a mechanism [10].

2.2 Spatial Partitions
The limitation of such regular partitionings is that since they
are defined a priori, they don’t reflect how participants will
actually use the space. Certain regions might be very crowded
and thus they become failure points at run-time. A solution
would be to locally refine the regular partition or add sub-
regions at run-time. In [4], Farcet et al. analyze a dynamic oc-
tree partitioning scheme that adapts to the actual clustering of
entities in the world. However maintaining world consistency
with such a scheme would be difficult under real-world
conditions.

One limitation of AOI management as described so far, is that
it is not reactive to load, but is an ideal relationship. Given that
either the client, server or network still might suffer from
overload, either the client AOI rules must adapt or the AOI
resolution system must relieve the load by adding extra
constraints, relaxing the satisfaction criteria by scaling regions
of interest down, or in the worst case simply randomly dropping
information. We call these approximate partitionings.

2.3 Network Architectures
The capabilities of an AOI management scheme are strongly
tied to the network architecture underlying it. Although AOI
management can be used on a single server to minimize
network load and client load, once server load becomes the
bottleneck, different architectures need to be investigated.

Two primary architectures have been investigated in previous
work: peer networks and multiple servers systems. A peer
network certainly alleviates any server bottleneck, but now each
client needs to perform an AOI interest calculation. Here in lies
a catch: in order to make the AOI calculation it will need to
know at least some information about all the other clients. In
order to avoid this calculation becoming a bottleneck, one
technique is to have a partitioning scheme that is built into the
description of the environment, with this scheme mapping gross
interest onto multicast groups. In the NPSNET system, the

space was partitioned into hexagonal cells, and each cell was
associated with a multicast group. A participant would send
data to the multicast group of the cell they were located in, but
would receive data from all the multicast groups for the cells
overlapping its AOI.

Multiple server systems are an alternative. These place the
responsibility for AOI management on a set of powerful servers
that have good interconnections. With the RING system,
Funkhouser has investigated two schemes [6]. The first
allocates a server to a group of participants. The servers
aggregate the AOIs of their clients, and inter-server
communication is limited to the information necessary to satisfy
the aggregate AOI. The second scheme allocates servers to
regions of the environment. In this scheme, participants connect
to the server that maintains the region they are interested in,
and must switch servers when they reach the region boundary.

Several variations on AOI management schemes can be found
in the literature. The separation between logical AOI
management and implementation is made concrete in Abram’s
three-tiered architecture [1]. The MASSIVE systems have a
very flexible AOI management system with dynamic adaptation
of partitionings and high-level description of AOI relationships
[3]. The Diamond Park system uses a beacon service to
discover multicast regions [2]. The DIVE system places the
multicast partitioning scheme under the control of a scripting
language, making dynamic partitioning dependent on object
behaviours as well as simple spatial partitions [7][5].

2.4 Cost of Partitioning
Any AOI management scheme that uses partitions suffers an
overhead in the cost of managing that partition. For example,
joining or leaving multicast groups is an operation that takes
time and network resources. Switching servers similarly
requires a potentially expensive re-allocation of network and
server resources.

In [16], Zou et al. phrase the partitioning problem as the
minimization of inter-server transfers. They break down the
environment into a coarse grid of N squares. They then build a
simulation where there is a known likelihood of a participant
transitioning between adjacent cells in the grid. From this they
try to partition the space into a fixed number (M, where M < N)
of server-managed regions, where the number of transitions of
participants is minimized.

3 PROCESS OVERVIEW
From the discussion in Section 2, we believe that although
spatial partitioning schemes have been widely discussed,
implementations rarely take in to account how the space will
actually be used. If a summary or prediction of usage patterns of
a space is available, then we can attempt to optimize the
partitioning scheme to generate a set of regions that will better
satisfy future usage patterns.

We have taken a hypothetical case based on pedestrian activity
in a part of central London (see Figure 1). This is based on a
real world monitoring of pedestrian flows along certain
segments of pavement. It is an interesting data-set because it

Figure 1 Observed relative density of pedestrians
around Regents St in central London (ObsWalkers).

Areas coloured black are the most densely populated.

has a large range of densities – many people walk up and down
Regents St, but few make their way on to Brewer St.
Unfortunately we do not have actual records of individuals’
behaviour. In the situation of an online game we might expect
to have complete logs of player location over the lifetime of the
game.

The actual pedestrian data was limited in extent, so for our
tests we augmented it with pavement and road information
from UK Ordnance Survey databases by giving each un-
monitored pavement and road a default pedestrian flow. Figure
1 illustrates the aggregate pedestrian as density ratios. Values
of 0 (black) imply most dense, values of 1 (white) imply no
occupancy.

We can use this density map to make a region partitioning
using a number of processes (see the following Section).
However there is a limitation with this data – because we
cannot track actual people in this space, we must build a
simulation of pedestrian behaviour. Modelling of crowd

behaviour in the real world at the individual agent level is an
open problem [11]. For these experiments we have used a very
crude crowd model (see Section 5). This occasionally produces
some un-natural behaviours, and agents in the simulation can
get “stuck” for short periods in cycles within the map.

Thus we have produced a second set of results, using a density
map resulting from the simulated crowds (see Figure 2). We
will refer to the observed and predicted data in Figure 1 as
ObsWalkers, and to the simulated data in Figure 2 as
SimWalkers.

We have assumed that there will usually be a target number of
participants for each server and that this is the same across all
servers. The main cost of partitioning the space will then be in
the handover between servers, and it is the number of
handovers that needs to be minimized. We are not attempting to
dynamically partition the world.

The process thus consists of the following steps:

1. Creation of ObsWalker data

2. Simulation of SimWalker data

3. Partitioning of ObsWalker data with threshold T

4. Testing of partitioning of ObsWalker with N agents

5. Partitioning of SimWalker data with threshold T

6. Testing of partitioning of SimWalker with N agents

Steps 3-6 are repeated for four partitioning schemes and
different values of T and N. In Section 4 we discuss the
partitioning schemes and in Section 6 we discuss strategies and
experiments with varying T and N.

4 PARTIONING SCHEMES
The crowd density maps are relative densities between 0 and 1.
In this simulation we have used an 8-bit value and interpolated
linearly between 0 and 1 for the density. We do not know the
number of people in a crowd or the time-step of the simulation,
and thus densities cannot be directly interpreted as an

Figure 2 Simulated pedestrian flows around Regents St
in central London (SimWalkers). Areas coloured black

are the most densely populated.

 (a) (b) (c) (d)

Figure 3 Example partitionings of ObsWalkers. (a) Quad Tree partitioning giving 212 regions (b) K-D tree unconstrained
partitioning giving 128 regions (c) K-D tree constrained partitioning giving 130 regions (d) Irregular region partitioning

giving 162 regions

expectation that a particular cell will be occupied in a time
period.

To partition the model, we use a threshold value where the sum
of the relative densities of a region should be less than the
threshold. As we will see in Section 6, it is difficult to choose a
threshold to achieve a particular constraint such as “in a
simulation of X agents, no more than Y% of the time will more
than Z agents be occupying any one server”.

It is also difficult to predict the geometric properties that a good
partitioning should have. Given a particular threshold
constraint, if there are fewer regions in a partitioning, the
average region density will closer to the target threshold.
Obviously servers with a higher relative density have a greater
probability of becoming overloaded. This must be traded off
against the number of servers and the minimization of server
handovers. At first glance this suggests that a partitioning
where minimization of the total region boundary length might
be an additional constraint. We have attempted to investigate
these issues by experimentation and will discuss this further in
Section 6.

There are two main approaches to partitioning: top-down
approaches that recursively split the world until regions satisfy
the threshold constraint, and bottom-up approaches where
regions are grown iteratively. The Quad Tree (Section 4.1) and
both K-d Tree (Sections 4.2 and 4.3) algorithms are examples
of top-down. The Region Growing (Section 4.4) is bottom-up.

4.1 Quad Tree
The first partitioning uses a quad-tree partitioning scheme. The
relative density for a region is calculated, and if greater than the
threshold the region is quartered and the process repeats. The
algorithm is started by setting the initial region to the whole
space. Figure 3(a) illustrates a partitioning on the ObsWalkers
data with a threshold of 350 that generates 212 regions. In the
figure the regions are coloured randomly for the purposes of
illustration. For the quad tree and the k-d tree algorithms
described below it is possible that after the partitioning some
regions will have a relative density of zero. These are not
counted and are removed from the simulation

4.2 K-d Tree Unconstrained
This is another top-down algorithm. The relative density of a
region is calculated and if it is greater than the threshold the
region is dissected by a horizontal or vertical line. The line of
dissection is chosen so that the two regions have as close to
equal total relative density as possible. Splits are made
alternately in the horizontal and vertical directions. The
algorithm is started by setting the initial region to the bounding
box of whole space. Figure 3(b) illustrates a partitioning on the
ObsWalkers data with a threshold of 350 resulting in 128
regions. Note that there are many long, thin regions.

4.3 K-d Tree Constrained
Very thin regions are potentially problematic when the aim is to
minimize the number of handovers between regions. This is
especially the case with the Regents Street data where there are

no roads following cardinal directions. Thus the K-d tree
constrained algorithm additionally specifies that no region will
have one edge longer than a given multiple of the other edge.
This is implemented in the recursion by constraining the axis of
the line of dissection and also the positioning of that line. This
means that a particular split may not result in close to equal
total relative densities in the two newly created regions. Figure
3(c) illustrates a partitioning on the ObsWalkers data with a
threshold of 350 resulting in 130 regions. The allowed ratio of
edge lengths in this example was 3. See [8] for a general
analysis of K-d tree partitioning schemes.

4.4 Region Growing
The region growing technique is a variation of standard image
processing algorithms for image partitioning. It starts from a
seed point and adds adjacent points until a threshold is reached.
The first naïve implementation uses a simple flood fill style
algorithm. Once the threshold is reached, a new seed point is
chosen. We prefer seed points that are close to the centre of
mass of completed regions, and have high relative density. Due
to the complex structure of the road system in this model, this
results in very uneven distribution of region sizes, with many
cells with small relative density.

A revised algorithm grows regions until they are within a
certain percentage of the threshold. A second pass then
aggregates small regions onto larger adjacent regions. We have
found that aiming for 90% of the threshold in the first pass
gives good results. Figure 3(d) illustrates a partitioning on the
ObsWalkers data with a threshold of 350 resulting in 162
regions.

5 CROWDING SIMULATIONS
We based our crowd simulation work on the system of Techia
et al. [14][15]. This system can simulate and render crowds
comprising 1000s of human figures at interactive frame rates.
The first component of the system is an image-based rendering
of virtual humans. The use of image-based rendering reduces
the detail needed for a humanoid to one or two polygons with
multiple textures. The second component is the simulation of
crowd behaviour that uses a number of short-cuts in order to be
able to achieve real-time performance.

Each simulated humanoid, or agent, must collide with objects
in the environment, avoid other agents and have a simple state-
machine for navigation strategy. In the simulations run in this
paper, agents have no high-level control. Later and separate
versions of the system have incorporated agent strategies where
the overall aggregate behaviour better correlates with actual
observed behaviours [11]. Integration of more complex, perhaps
non-real-time agent behaviours into our network simulations
remains future work. Thus, as Section 6 will discuss, we have
performed partitionings based on both observed and simulated
crowd data.

Collision detection and avoidance are done using a
discretisation of the space. In the system described in [14][15],
a 2D collision map is extracted from the Z-buffer of a parallel
projection rendering of the target model from a viewpoint above
and looking straight down at the model. This collision map

allows agents to walk over small steps. Since we only require
planar movement, we can simply use the density maps as
shown in Figures 1&2, and restrict agents to walking on non-
white pixels. Collision between agents is avoided by each
agent’s temporarily altering the 2D collision map to indicate
the squares immediately adjacent to the square they are in are
occupied. Thus, as agents move around the model they read and
write collision information into this collision map.

Note that our simulation is derived from the crowd system in
[14], and does not support the advanced rendering and
occlusion features of later systems [15].

6 ANALYSIS
There are three aspects to the analysis. Firstly we look at
typical partitioning results for a fixed threshold and compare
region counts and region sizes. Secondly we analyze a
particular situation where the threshold is constant. We look at
the four partitioning schemes, and investigate how they perform
with both density maps. Thirdly we investigate how to tackle
typical server reliability problems in more depth.

6.1 Partitioning Behaviour
Figure 3 gave examples of partitioning to a given threshold for
the ObsWalker data set. Table 1 shows the corresponding
region counts for each partitioning method for both data sets.

Quad
Tree

K-d Tree
Unconstrained

K-d Tree
Constrained

Region
Growing

ObsWalker 212 128 130 120

SimWalker 232 128 129 143

Table 1 Region counts for the two data sets under different
partitioning with threshold of 350

The base map measures 793x1023 pixels and 35% of the area
is walkable in the ObsWalker data set. After the simulation we
find that the agents reach each pixel in that map. The threshold
relative density is 350. With the Quad Tree approaches we
would expect that our smallest region would have 350/4 pixels.
That is it resulted in a split of a region that was just above the
threshold. Similarly for the K-d tree we would expect 350/2.
Ideally with the Region Growing we would expect our
minimum region size to be 350, but we will find smaller
regions because of the difficulties in tiling together regions in a
complex map.

Figure 4 gives the region size frequency for each partitioning.
The categories refer to a range of cell sizes, with each category
covering double the range of the previous one. We can see that
the constraint on region length imposed on Kd-Tree has little
effect on neither number nor spread of region size.

6.2 Fixed Threshold Condition
Once the partitioning has been made, we run simulations to
assess how many handovers between regions there are and to
determine typical cell density patterns.

Table 2 shows the number of handovers in a simulation with
1000 agents running over a 2000 step simulation period. The
ranking of each partitioning is the same in each case, with
Region Growing generating the smallest number of handovers.
The difference between the best and worst is not that
significant, being a matter of 20% or 10% difference. Notably,
as was found in Table 1, the Quad Tree had many more cells
than the others. The other techniques generated roughly the
same number of cells on average.

Cell size distribution in ObsWalker partitioning
with threshold of 350

0
20
40
60
80

100
120
140
160
180

256 512 1024 2048 4096 8192 16384

Cell size in range N to 2N-1

N
u

m
b

er
 c

el
ls

Cell size distribution in SimWalker partitioning
with threshold of 350

0

50

100

150

200

250

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4

Cell size in range N to 2N-1

N
u

m
b

er
 c

el
ls

Quad Tree K-d Tree Unconstrained

K-d Tree Constrained Region Growing

Figure 4 Cell size distributions for the two data sets with
threshold of 350

 Quad
Tree

K-d Tree
Unconstrained

K-d Tree
Constrained

Region
Growing

ObsWalker 19800 18938 17693 15766

SimWalker 20797 19188 18551 18145

Table 2 Handover counts for the two data sets under
different partitionings with threshold of 350

A more in-depth picture of what is happening is shown in
Figure 5. This shows a summary across all servers and time-
steps of how often a particular agent count was reached. We
can see that the Quad Tree has fewer agents per cell as there
are many more cells. The Region Growing technique has some
cells with relatively few agents but the spread is also greater.
The maximum number of agents in a cell was 30 in the Region
Growing partitioning of the ObsWalkers data set. This
happened 16 times over 120 regions, over 2000 time-steps (i.e.
0.0066% of the time).

 Quad
Tree

K-d Tree
Unconstrained

K-d Tree
Constrained

Region
Growing

ObsWalker 99.1 97.9 97.8 95.2

SimWalker 99.8 99.2 99.3 99.3

Table 3 Percentage of server/time-steps with 16 or fewer
agents

Table 3 shows the percentage of servers/time-steps with 16 or
fewer agents. This suggests that when the simulation does not
fit the prediction (ObsWalker), Region Growing techniques
gives a partitioning where regions have a higher likelihood of
being congested. In this case on average 4.8% of servers were
overloaded at any one time-step, whereas the Quad Tree, with
roughly twice as many regions, gave an overload rate of only
0.9%. With the SimWalker data the K-d tree and Region
growing algorithms perform roughly equally. In this situation
the simulation behavior is following the density that was input
into the partitioning.

6.3 Reliability Target
The previous two sections demonstrate the numbers of cells and
number of handovers that can be expected. However, what is
more pertinent when designing a real system is how many
regions in each partitioning would be necessary to meet a
particular reliability condition, and how many handovers would
be produced?

We will look at two scenarios using the ObsWalker data:

1. 1000 participants are to be supported. The target
server capacity is 16. A reliability of 95% is required

2. 4000 participants are to be supported. The target
server capacity is 128. A reliability of 90% is
required.

6.3.1 Scenario 1

The use of the threshold is quite a crude device for selecting
number of regions. We find that increasing the threshold from
330 through 410 in 8 steps does not change the number of Kd-
Tree regions with remained at roughly 128 regions. The Quad
Tree does change size, but the total number of nodes remains
high. At thresholds 330-410, each of these three algorithms
performs in the range 97-99% reliability. At a threshold of 590
the number of cells in each of these methods has roughly halved
(121, 64, 66 respectively), but the reliability of the Quad Tree
remains high and the Kd-Tree algorithms have dropped below
90%.

Cumulative percentage of cells with a specific
agent count (ObsWalker)

0

20

40

60

80

100

120

0 3 6 9 12 15 18 21 24 27 30

Agent count

C
u

m
u

la
ti

ve
 %

Cumulative percentage of cells with a specific
agent count (SimWalker)

0

20

40

60

80

100

120

0 3 6 9 12 15 18 21 24 27 30

Agent count

C
u

m
u

la
ti

ve
 %

Quad Tree K-d Tree Unconstrained

K-d Tree Constrained Region Growing

Figure 5 Server usages presented as cumulative percentage

The Region Growing performs very differently producing
different number of regions (see Figure 6). Lack of space
prevents our including complete details, but we are able to get
reliability close to 95% with a threshold of 360 producing 117
regions. During the simulation this generates 17340 region
handovers. This compares well with the results for Quad Tree
and Kd-Tree. Thus the Region Growing provides a lower
number of handovers and lower number servers for the required
reliability. The main observation is that Region Growing
provides greater flexibility to meet different targets.

6.3.2 Scenario 2

Figure 7 shows an analysis for Scenario 2. Again we see the
features discussed in Section 6.3.1. The Quad Tree provides a
range of regions sizes under the various thresholds. We see the
drop in region count with the two K-d Tree algorithms. With
the Kd-Tree algorithms we subsequently see a large drop in
reliability. With the Region Growing technique we can select
close to 90% reliability by taking a threshold of 980 giving 40
nodes. The best we can do with a Kd-Tree is a much better
reliability of 98% with 62 nodes, and with the Quad-Tree
algorithm, a reliability of 89.5% with 55 nodes. Again this
shows the greater flexibility of Region Growing.

7 DISCUSSION AND CONCLUSIONS
We have examined the performance of four types of spatial
partitioning in supporting large numbers of participants in a
virtual environment. Specifically, we are trying to support more
participants that can be allocated to a single server. We have
taken as our case study, a hypothetical system that supports a
number of participants visiting a virtual model of a part of
central London. Because we do not have tracking data from
individuals we have had to rely on a simulated crowd within
this environment. However we did have some knowledge about
the actual use of the real space by pedestrians and we
incorporated that into a prediction of the use of space.

Throughout our analysis we compared the prediction of space
usage with the usage of the space by the simulation. This re-
assures us that predicted usage forms a good basis for
development of a spatial partitioning. However a shortcoming
is that the crowd simulation model is not a good representation
of actual human behaviour. We do not simulate the effects of
points of interest in the model, nor temporal properties, such as
commuting. In our model we have also assumed that virtual
participants will walk with similar speeds and in the same
places as real pedestrians. Of course, for proper application to a
virtual world either real usage data will be needed or a better
simulation model of participant behaviour.

Our goal for the analysis was to investigate properties of the
partitionings and also to attempt to find procedures for
generating partitionings that could meet reliability criteria. The

Scenario 1: Occurence of 16 or fewer agents for
various Region Growing partitionings in a 1000

agent simulation

0

50

100

150

33
0

34
0

35
0
36

0
37

0
38

0
39

0
40

0
41

0

Threshold

N
u

m
b

er
s

re
g

io
n

s

85

90

95

100

R
el

ia
b

ili
ty

 %
Regions Reliability

Figure 6 Graphs of reliability in Scenario 1

Scenario 2:
Region Counts for Thresholds

0

20

40

60

80

100

120

78
0

88
0

98
0

10
80

11
80

12
70

13
70

14
70

15
70

Threshold

R
eg

io
n

 C
o

u
n

t

Percentage of servers with 128 or fewer agents
under different partitionings

0

20

40

60

80

100

78
0

88
0

98
0

10
80

11
80

12
70

13
70

14
70

15
70

Threshold

P
er

ce
n

ta
g

e

Quad Tree K-d Tree Unconstrained

K-d Tree Constrained Region Growing

Figure 7 Graphs of region count and reliability for
Scenario 2

first reliability criterion was a limit on the number of
participants on a server. It is easy to generate partitionings that
meet this criterion by creating many regions, but this both
increases the number of servers or network groups that must be
provisioned and increases the likelihood of a participant having
to move between servers incurring significant run-time
resources. Thus a partitioning must attempt to meet the
participant limit but minimize the number of servers and the
number of handovers. In Section 6 we found that a Region
Growing technique can better satisfy the various requirements
of a networked server system than a Quad Tree or K-d Tree
based algorithm. We hypothesize that the Region Growing
technique is better because, by the nature of the construction
mechanism, it tends follows the likely connections between
dense areas. In the other techniques, regions are rectangles and
a single region might contain a number of disjoint navigable
areas. For example, a region could contain two parallel streets
where it isn’t possible to travel between the two streets without
exiting the region. This means that, other things being equal,
the likelihood that the participant will leave the cell within a
short time period will be higher with these regular
partitionings.

Our usage of predicted models of behaviour as the basis for the
ObsWalker data set was inspired by the analytic techniques of
space syntax, where usage of space by pedestrians can be
derived from analysis of configuration and connectivity of the
real urban fabric [9]. In future work we hope to extend and
apply such techniques to the prediction of usage of more
abstract virtual worlds. Although the partitioning techniques
have been developed for a London-based scenario, they are
applicable to any type of environment. For more open
environments, one of the regular partitioning schemes may as
efficient as the Region Growing, but we expect that with
environments with complex topologies of participant behaviour,
an irregular partitioning such as Region Growing would prove
superior. More complex worlds involving 3D structures would
require different discretisations of space, but we would expect
that the Region Growing strategy would still be productive
across such discretisations.

Finally, we have assumed a static partitioning scheme since it
is easy to configure and it is reliable since the maintenance of
the partitioning itself requires no server overhead or network
traffic. However such a scheme will not work if participant
numbers or usages of space change dramatically. If overall
numbers or congestion in a particular region rises then regions
could be dynamically split, but this re-introduces the problem
of dynamically adding servers to a running system. However we
have seen that a small subset of the servers might be relatively
under-loaded so regions might dynamically created, but then
allocated to currently under-utilized machines.

ACKNOWLEDGMENTS
Thanks to Franco Tecchia, Celine Loscos and Yiorgos
Chrysanthou for giving us access to their crowd simulation.

REFERENCES
[1] H. Abrams, K. Watsen, and M. Zyda. Three Tiered

Interest Management for Large-Scale Virtual
Environments, Proceedings of VRST 98, 1998, Taipei.

[2] J.W. Barrus, R.C. Waters, D.B. Anderson, Locales and
Beacons: Efficient and Precise Support for Large Multi-
User Virtual Environments, IEEE Virtual Reality Annual
International Symposium, IEEE Computer Society Press,
Los Alamitos CA, 1996.

[3] S. Benford, C. Greenhalgh, D. Lloyd, Crowded
Collaborative Virtual Environments, Proc. ACM CHI'97,
Atlanta, US, March 1997, ACM Press.

[4] N. Farcet, P. Torguet. Space-Scale Structure for
Information Rejection in Large-Scale Distributed Virtual
Environments, Proceedings of IEEE Virtual Reality
Annual International Symposium, March 1998.

[5] E. Frecon, G. Smith, A. Steed, M. Stenius, O. Stahl, An
Overview of the COVEN Platform, Presence:
Teleoperators and Virtual Environments, 10(1), February
2001, pp. 109-127 , MIT Press, ISSN 1054-7460

[6] T.A. Funkhouser, Network Topologies for Scalable Multi-
User Virtual Environments, IEEE VRAIS `96, San Jose,
CA, April, 1996.

[7] O. Hagsand, Interactive Multiuser VEs in the DIVE
System. IEEE Multimedia, Spring 1996, Vol. 3, No.1, pp.
30-39, IEEE Computer Society, ISSN 1070-986X

[8] V. Havran, Heuristic Ray Shooting Algorithms, PhD
Thesis, Czech Technical University, Prague, 2000.

[9] B. Hillier, Space is the Machine, Cambridge University
Press, 1996,

[10] M.R. Macedonia, M.J. Zyda, D.R. Pratt, D.P. Brutzman,
P.T. Barham, Exploiting Reality with Multicast Groups,
IEEE Virtual Reality Annual International Symposium,
(VRAIS’95). September 1995, pp.38-45.

[11] A. Turner, A. Penn, Encoding natural movement as an
agent-based system: an investigation into human
pedestrian behaviour in the built environment.
Environment and Planning B: Planning and Design
29:473-490

[12] S. Sandeep, M. Zyda, Networked Virtual Environments -
Design and Implementation, ACM Press Books,
SIGGRAPH Series, 23 July 1999, ISBN 0-201-32557-8

[13] D. Snowdon, C. Greenhalgh, S. Benford, A. Bullock, C.
Brown, A Review of Distributed Architectures for
Networked Virtual Reality, Virtual Reality: Research,
Development and Applications, Vol. 2 No. 1 1996.

[14] F. Tecchia, C. Loscos, Y. Chrysanthou, Real Time
Rendering of Populated Urban Environments, ACM
Siggraph'01 technical sketch, Los Angeles, California,
USA, August 2001.

[15] F. Tecchia, C. Loscos, Y. Chrysanthou, Image Based
Crowd Rendering, IEEE Computer Graphics and
Applications, March/April 2002 (Vol. 22, No. 2).

[16] L. Zou, M. Ammar, C. Diot. An Evaluation of Grouping
Techniques for State Dissemination in Networked Multi-
User Games. Proceedings of the Ninth International
Symposium on Modelling, Analysis, and Simulation of
Computer and Telecommunication Systems,
(MASCOTS'01), August 2001.

