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Figure 1: Extracted and collapsed editing timeline (bottom) from 9 keyframes (top) of a genuine modeling sequence with over
7.6 million polygons in total. Legend to the detected operations is listed in §5 and the full timeline is in supplemental materials.

Abstract

We present a novel tool for reverse engineering of modeling histories from consecutive 3D files based on a timeline
abstraction. Although a timeline interface is commonly used in 3D modeling packages for animations, it has not
been used on geometry manipulation before. Unlike previous visualization methods that require instrumentation
of editing software, our approach does not rely on pre-recorded editing instructions. Instead, each stand-alone
3D file is treated as a keyframe of a construction flow from which the editing provenance is reverse engineered.
We evaluate this tool on six complex 3D sequences created in a variety of modeling tools by different profes-
sional artists and conclude that it provides useful means of visualizing and understanding the editing history. A
comparative user study suggests the tool is well suited for this purpose.

1. Introduction

As 3D geometry processing tools become more accessible,
their use in applications ranging from games through to 3D
printing is surging. Consequently, there is a growing need to
inspect and organise large model collections. These might
arise from archives of similar models that need to be cate-
gorised by type or shape. However, we identify a comple-
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mentary problem; The organisation of models in a temporal
domain of editing history. The problem arises since many
tools do not save the editing history, and even if they do, only
for a few recent steps. Such native histories can anyway be
manually deleted and are also lost when exporting into inter-
change formats. Although most tools allow file names to be
auto-increment and auto-saved, management of such files is
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poorly supported. This leads to what we might call the disk
full of models problem: There is a disk, or a version con-
trol repository, with various versions of models, but under-
standing the provenance of these potentially large datasets is
hard due to little associated metadata. For example in Arup, a
multinational engineering firm that is also one of Autodesk’s
largest customers, this problem is experienced frequently as
projects span multiple specialized 3D software. Their prac-
tice is to periodically save snapshots of whole 3D files. Sim-
ilar approach is also prevalent in creative industries, e.g.,
the former Black Rock Studios or Wham Bam Productions,
where tools to explore model histories are sorely needed.

Therefore, we present a novel tool that takes sets of mod-
els and builds a visualization of a high-level provenance.
The tool does this by reverse engineering a plausible history
of parts (components) of a model and then by summaris-
ing important changes. These are displayed on a timeline
that makes it easy to visually track the lifetime of each part
and its relation to other parts. Using this tool the user would
be able to answer important questions about the model his-
tory, such as the timing of a particular change, or the steps at
which an error was introduced. Figure 1 shows an example.

Grossman et al. [GMF10] visualize the history of images
in a timeline, but to do so they instrument an editor and video
record the entire session. Their system has been extended
to Autodesk’s CAD software, too. Nevertheless, such a cap-
ture might not necessarily exist. This is certainly the case
for the majority of legacy 3D models that one might want to
inspect. Hence, our tool is agnostic to the editors that gen-
erated the models and takes as input complete files. It does
not require any instrumentation, nor any editing sequence. In
our demonstrations, we used models saved from Autodesk
Maya, Pixologic ZBrush, Trimble Sketchup, Blender and
Luxology Modo. The models that we tackle initially consist
of millions of polygons. To make this tractable from an anal-
ysis point of view, and to achieve a concise visualization, our
work is based on the observation that many models are com-
posed of separate parts rather than single manifold surfaces.
Models are thus often comprised of duplicated, symmetric or
self-similar parts [MPWC13]. Hence, our focus is on reverse
engineering the changes in parts and the aspects of duplica-
tion, provenance from common roots and instantiation.

Similarly to the very recent inverse image editing
[HXM™*13], we propose a set of simple geometric rules
and methods to detect common edit operations and extract
semantic provenance. We further provide a summarization
by collapsing non-conflicting edits and removing redundant
model snapshots. The analyzed and abstracted timeline can
then be displayed in our custom viewer to quickly browse
over the edit history and focus on key events. We tested the
system on a range of models, often spanning 50-100 snap-
shots each with thousands of components, and recovered
compact and informative edit summaries, see Fig. 8.

2. Related Work

Grabler et al. [GAL*09] generate visual tutorials of photo
editing sessions based on author demonstrations in an in-
strumented version of GIMP. Chronicle by Grossman et
al. [GMF10] supports document history exploration by link-
ing the editing events and components of the Ul into a video
playback. The resulting video is indexed and hierarchically
clustered. This, however, requires software instrumentation
and large disk space for generated sequences. In the con-
text of 3D models, Denning et al. [DKP11] obtain sequences
using an instrumented Blender plug-in, which records all
editing operations. These are clustered by analyzing the fre-
quency of repeated operations using substituting regular ex-
pressions. In contrast, our method takes just a sequence of
models as saved to disk. Even commercial products such
as VisTrails [BCC*05] plug-in to Autodesk Maya preview
recorded edits. We extract histories when instrumented edit-
ing software is unavailable.

Shape analysis. Over the years, researchers have investi-
gated how to compute consistent alignments and correspon-
dences within surface pairs [VKZHCOI11], and on collec-
tions of 3D models [NBCW*11, HKG11]. Since in many
contexts point-correspondence can be ambiguous and fuzzy,
more abstracted part-based correspondence has been inves-
tigated. Golovinskiy and Funkhouser [GF09] first proposed
consistent segmentation in the context of mesh pairs. They
relied on rigid alignment and nearest neighbors to establish
correspondences, and jointly segment all the input models
into parts. Subsequently, several methods have been devel-
oped to address the problem of consistent segmentation and
labeling by clustering points in an embedded space of local
shape features [KHS10,HFL12,SvKK* 11, WAVK*12] or us-
ing coupled modal analysis [KBB*13], either in supervised
or unsupervised settings. Recently, Kim et al. [KLM*13]
jointly optimize for correspondence, part segmentation, and
part-level deformation to analyze model collections. Unlike
these, our goal is to detect editing operations (mesh refine-
ment, instancing), while the untouched parts of the meshes
remain identical across the frames. The linear sequences re-
sult in models that are not suited for coanalysis, since geo-
metric similarities are confined to neighboring frames.

Mesh morphing. In presence of point-level correspondence
information across mesh pairs, early efforts in computer an-
imation proposed multiresolution mesh interpolation frame-
works [LDSS99, MKFCO1]. Subsequently, algorithms have
been developed to interpolate mesh collections by construct-
ing and navigating underlying shape spaces [SZGPOS5]. Jain
et al. [JTRS12] synthesize new 3D shapes by interpolating
between a pair of input meshes. They segment the models
into hierarchies of connected components via intersection
detection. A single slider creates intermediate meshes by us-
ing the underlying contact and relation graphs. We too in-
terpolate models via a slider, although, our challenge is to
reverse engineer the edit trees from the input data.
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Version control. Chen et al. [CWC11] propose a non-linear
version control for image edits. They use a directed acyclic
graph to represent sequences with graph nodes being edit
operations and graph edges being the corresponding spatial,
temporal, and semantic relationships. The recorded graphs
are then visualized to display revision history. They also
propose an easy-to-use interface to support common revi-
sion operations (e.g., review, replay, diff, addition, merging,
etc.). In the context of 3D models, Dobos and Steed [DS12a,
DS12b] used two and three-way differencing and merging
on 3D assets and introduced a tool to merge changes in
scene graph components while resolving conflicts by accept-
ing or rejecting entire revisions. Correspondence was estab-
lished assuming component-level unique name identifiers.
More recently, in an interesting system, Denning and Pel-
lacini [DP13] approximate edit distance as a cost of match-
ing elements across two meshes. By treating faces and ver-
tices as nodes of a graph with edges representing their ad-
jacency relations, they convert the task of mesh differencing
into a maximum common subgraph isomorphism problem.
The method relies on spatial adjacency and does not handle
modeling operations (e.g., instantiation, free-form shape ma-
nipulation, remeshing, etc.), which is the focus of our work.

3. System Overview

Given a set of consecutive 3D models, which we call
keyframes, our goal is to reverse engineer a modeling tree
that explains their relationships. We do this by decomposing
the keyframes into parts, and for each part, track its prove-
nance, i.e., how it is related to identical or similar parts in
adjacent frames. The full modeling tree will then explain
the life history of every identified model component. Be-
ing an inverse problem, the task is ambiguous with multi-
ple intermediate edits potentially explaining the input model
sequence. Hence we do not attempt to recover the actual his-
tory, nor do we attempt to exhaustively generate all possi-
ble permutations of the histories. Instead, we seek to infer a
plausible flow of steps that fulfils our assumptions with re-
gards to permitted editing operations, and provides a consis-
tent explanation of the geometry found in the input models.

3.1. User Interface

From the user perspective, the detected operations together
with their visualization and playback form the core output of
our system, see Fig. 2. Even though modeling might be re-
garded as continuous in the temporal domain, we discretize
the construction into individual events, see §5.1. In this work
we focus on the following basic component-level operations:
addition and deletion, changes in polycount and size of cor-
responding parts as well as detection of transformations, du-
plications, instancing, and repeated copying. As validated
on various modeling workflows in §7, such operations are
dominant in edit histories and understanding them provides
valuable insight, albeit not necessarily capturing all of the
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Figure 2: Prototype GUI implemented in a cross-platform
framework Qt. Morph window (top), keyframes with corre-
spondence (middle) and estimated timeline (bottom).
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Figure 3: Pipeline. A collection of consecutive models is
loaded. In a pre-processing step the meshes are individually
segmented and a part-based correspondence is estimated.
This is analyzed and the implied editing history is visualized.

steps an artist might have performed. To generate a timeline,
the user first loads the model keyframes from which the sys-
tem automatically extracts and estimates a component-level
correspondence flow across the frames. Subsequently, in the
key analysis phase, we imply edit operations and visualize
them using a timeline metaphor (see supplementary video).
The user can scrub through the timeline, as they might in a
video editor, and an animation is created that demonstrates
how the model evolves over time. Similarly to [GMF10], a
timeline compression further simplifies the displayed infor-
mation without violating extracted provenance (Fig. 1 bot-
tom). Note that in rare cases when automatic correspondence
fails, the user can manually override the assignment.

3.2. Processing Pipeline

The input keyframes or modeling “snapshots” provide direct
evidence from which our reverse engineering solution im-
plies the missing editing steps that were not recorded, Fig. 3:

1. First, in pre-processing (§4), we perform an independent
component analysis to extract model segments and estab-
lish the mutual correspondence across the frames.

2. Next, via semantic analysis (§5), we detect editing oper-
ations across the keyframes. The extracted operations are
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then grouped, and possibly collapsed by merging non-
conflicting edit operations across time.

3. Finally, the extracted provenance is visualized as a time-
line (§6) with color-coded correspondence, marked indi-
vidual events, and a playback option. The compressed
timelines provide succinct edit summaries showing a
quick overview, particularly for long sequences.

4. Pre-processing

Artists typically create, represent, and manipulate shapes as
collections of components that are commonly supported by
various primitive-based modeling tools. Hence, in contrast
to coanalysis of model collections, we have a different prob-
lem (see §2). As demonstrated in [GF09], relying strictly on
a pre-alignment of the meshes can yield poor results. There-
fore, we do not make assumptions with regards to the initial
global alignment of the models. Instead, we build upon the
observation that early design stages are often characterized
by massing, i.e., outlining of the most prominent volumes
first before progressively adding detail later [ES11]. Hence,
we focus on establishing a component-level correspondence
across the frames, starting with the dominant largest com-
ponents that then provide additional contextual information
for the less prominent parts allowing factoring out of global
rigid transforms. Furthermore, the neighbouring models in
a construction sequence tend to be highly correlated with
many sections being locally unmodified. We take advantage
of this crucial characteristic and formulate a sequential cor-
respondence estimation as explained in §4.1.

Segmentation. We use classical hierarchical face cluster-
ing [GWHOI] to independently generate non-overlapping
components as clusters. This algorithm builds a dual graph
of a mesh surface such that nodes represent clusters initially
seeded by individual faces while edges, ordered according to
the cost of collapsing, their adjacency. At each iteration, the
lowest cost edge is removed, its clusters are merged and the
costs of their inherited edges are recalculated. Apart from
clusters’ planarity, the cost can express conformity to shapes
such as spheres and cylinders (c.f., [AFS06]). The algorithm
proceeds until the edges have been exhausted, effectively
identifying disjoint manifold components.

4.1. Correspondence Flow Estimation
In pursuance of a correspondence flow
F:{Ctl ‘)Cti“ ‘>~--‘>Ct,-+,,}, (1)

i.e., an assignment of a component C at time ¢ to a com-
ponent C" at time ¢/, it is simply not sufficient to find the
most similar meshes since components can be deformed, re-
fined, copied, etc. Rather, the exact same component needs
to be identified and tracked across all keyframes so that its
provenance can be reliably implied. Thus, the correspon-
dence measure has to be robust to changes in shape and lo-
cation, yet discriminate duplication.

PCA-aligned bounding boxes. First, we calculate a prin-
cipal component analysis (PCA)-aligned bounding box so
as to establish a rough descriptor for each component, c.f.,
[JTRS12]. PCA of vertices v; in a component C weighted
by the cumulative area A; of parent faces provides a trans-
formation from the global to a local coordinate system. Let
Cqlv,w,h,d] be the bounding box of C in this coordinate
system with a centroid v = i A;v;/Y1_ | A;, and [w,h,d]
its respective width, height and depth. This bounding box re-
flects the spread of vertices along principal axes, is rotation
invariant and robust to local geometry modifications.

Part-based hierarchy. Building a part-based hierarchy is
a common way of adding contextual support and rela-
tive localization to otherwise loose components [SSS*10,
JTRS12]. Instead of building a complex tree of components,
in the next step at each keyframe independently we start with
a forest of one-level deep trees rooted at the largest com-
ponents. Hence, a parent Cp of a component C is the one
that contains its bounding box and has the largest volume.
This provides localized systems where the largest compo-
nents have an explicit global reference at the origin. Note
that the parental component might not be the same part of a
scene as components can be translated, duplicated, discon-
nected, etc.

Correspondence estimation. Based on the bounding boxes
and the hierarchy, correspondence between components can
be estimated. Let Eg be a similarity error between two com-
ponents C and C’ defined as a I?-norm of their bounding
boxes irrespective of their centroids v, 7’

Es := ||Ca[w, h,d] — C[w', i ,d']||. 2)

We use this error measure to first group self-similar compo-
nents in each keyframe independently, as shown in Fig.4.
Let E;, be a localization error defined as an absolute differ-
ence of Euclidean distances of centroids of the component
bounding boxes CD,C'D to the centroids of the bounding
boxes of their associated parental components Cp ,C}/D as:

Ep = |[[v—vp|| — |7 —7p]||. 3)

By combining definitions (2) and (3) for each pair of com-
ponents in two frames we obtain an affinity matrix S as a
weighted sum of the similarity and localization errors:

Si,j = (XEs+(1—OC)EL. 4)

Correspondence propagation. Finally, a greedy one-to-
one assignment based on the affinity matrix S estimates the
initial correspondence from frame #; to #;_j, see step (2)
of Fig.4. This assignment is then checked for consistency
based on a majority vote within a group. Outliers at #;_
with correspondence assigned from a non-matching self-
similarity group at #; are reassigned to the remaining com-
ponents of the desired group at #;. This enforces a consistent
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Figure 4: Correspondence assignment from time t; to t;_|.
(1) Firstly, self-similarity groups are established indepen-
dently within each timeframe. (2) Next, a one-to-one cor-
respondence is assigned. (3) Finally, a consistency check
ensures that all correspondences come from a single self-
similarity group in t; based on a majority vote in t;_j.

flow between groups of components rather than the individu-
als, see step (3) of Fig. 4. We proceed through pairs of neigh-
boring frames from the last to the first. If a correspondence
cannot be reliably established in two neighbors, a frame can
be skipped in order to try and find a match in the next frame
repeating such an attempt until a suitable candidate is found
or the beginning of the sequence is reached. Due to a mem-
bership in a self-similarity group, most components gain not
only a one-to-one but also a one-to-many correspondences.
This is illustrated in Fig. 8, where massive “funnels” repre-
sent extracted interconnected groups as duplication.

5. Semantic Analysis

As illustrated in (5), correspondence flows can be repre-
sented as a sparse binary m X n matrix ®, where m is the
number of flows and n the number of keyframes.

f t . th
Fr (G Cip - Ciy
B | Gi Gy - Gy

(bm,n = . . . . . (5)
Fn Cm,l Cm,2 co Cm,n

Entries in @ express a component C; ; being or not being
present in a keyframe at time #;. Hence, each row defines a
single logical scene-part tracked over time, while columns
are collections of components that belong to a particular
keyframe. In such a representation the natural temporal or-
dering is from left to right, i.e., from the first to the last
keyframe. By sorting the rows such that a presence in an
earlier column ¢ and more overall entries across all columns
are favored, we also gain a top to bottom temporal ordering.

5.1. Editing Operations

Once we have the correspondence flows in matrix ®, we can
inspect the part-by-part changes between pairs of keyframes.
Changes are classified into one or more of the following op-
erations. We include visual icons for reference.
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¢ Addition. A component C; ; has been added between
tj—1 and ¢; iff it is the first in its self-similarity group and
there is no associated corresponding component C; ;1.

= Deletion. Conversely, acomponent C; ; has been deleted
between ¢; and ¢ iff no correspondence at ¢, exists.

Life-span. The difference in time between a component
being added and deleted represents its life-span.
Duplication. A component C; ; is a duplicate iff it is
added but not a template, i.e., not the first in its group.

Em Polycount increase. A component C; ; has increased in
polycount between ¢; 1 and ¢; iff it has a larger number
of polygons than C; ;1.

Il Polycount decrease. Conversely, a component C; ; has
decreased in polycount between t;_ and ¢; iff it has a
smaller number of polygons than C; ;1.

t o Size increase. A component C; ; has increased in size
between #; 1 and ¢; iff its bounding box volume is larger
than that of C; ;.

2 » Size decrease. Conversely, a component C; ; has de-
creased in size between t;_1 and ¢; iff its bounding box
volume is smaller than that of C; ;.

Translation. A component C; ; has been franslated be-
tween #; 1 and ¢; iff there is a difference T in the global
position of its bounding box centroid ¥; ; to that of C; j
or to its template at ¢; if it is a duplicate.

Repeated copy. A componentC; ; is a repeated copy be-
tween ¢;_ and ¢; iff it is a duplicate and its T belongs to
a list of at least 3 successive translations, see §5.2.

Instancing. A component C; ; is instanced iff it is a du-
plicate and its life-span operations match the template.

Our semantic labeling iterates through each row of ®
and for each column (keyframe) it detects these operations
one-by-one via a lookup table. Certain operations such as
changes in polycount and size can and often do occur simul-
taneously.

5.2. Repeated Copying Detection

Apart from instancing, another special case of duplication
is repeated copying. A template which was duplicated and
belongs to a self-similar group G; at time ¢ is a compo-
nent with the largest lifetime. In a case of multiple com-
ponents fulfilling this criterion, the choice is arbitrary. Re-
peated copying, however, differs from basic duplication in
that the translation from the template to each copy is repet-
itive, i.e., can be expressed as an incremental succession of
the same translation 7" such that the most immediate copy
is assigned 1 x T, the next 2 X T and so on while 7 is min-
imal. Essentially we are looking for a 1-parameter regular
structure (c.f., [PMW*08]), where the component-based in-
stances and repetitions are exact, and hence easier to dis-
cover. We focus on repeated copying that is equally spaced.

In order to unravel repeated copying, the detection algo-
rithm proceeds as follows. Given a self-similarity group G,
an arbitrary component Cs € G is selected as a seed. The aim
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Figure 5: Repeated copying detection. (1) Distances from
an arbitrary seed Cg are calculated. (2) The smallest vector
defines the desired line direction. (3) Components with par-
allel vectors are selected and unparallel (4) rejected. (5) The
furthest component becomes the new template.

is to find at least 2 other components that would form a re-
peated sequence with Cg, their spatial ordering, the template
component and the translation 7 that governs the repetition.
Firstly, distances from Cg to all components are calculated,
step (1) in Fig.5. Let A.CS> be a vector from any other ar-
bitrary component A € G AA # Cs. A distance from Cy to
B € G is considered negative iff A_Cg B_CS) < 0. The compo-
nents are then sorted according to the signed distance from
the most negative to the most positive with Cs being also
included with a trivial non-negative zero distance to itself.
Let Cfg # Cg be the component with the smallest unsigned

distance (in absolute terms) to Cs. Vector CTCE then defines
a line on which the repeated copying is expected to occur
while its magnitude the desired repetition distance, step (2)
of Fig.5. Next, the components are checked one-by-one in
the order of signed distances. Component D is considered a

. . g
member of a repeated copying subgroup iff ||C?) x CsCg|| =
0, i.e., the vector from a seed component to D is parallel with

the desired line and mod(||C?>)||7 ICsCsl)) = 0, step (3) of
Fig. 5. If less than 3 components fulfil the condition, vector

CsCy with the next smallest magnitude is selected as the new
seed vector and the process repeats with Cg removed from G.
If, however, 3 or more components were found, these form
the desired copying subgroup with the head of the list being
the new template and the translation calculated as multiplies
from it, step (5) of Fig. 5. The subgroup is removed from G
and the algorithm repeats until there is not enough compo-
nents or all possible seed distances have been exhausted.

5.3. Timeline Compression

In the Medieval dataset (Fig.2), for example, there are
510 individual components across the sequence, yet these
form only 17 component groups altogether. Further, many
editing operations are repeated across multiple components
such as is the case of instancing while others are independent
of each other. Our goal is to simplify the apparent complex-
ity of the timeline matrix ¢ while preserving the essence of
the reverse engineered provenance. Therefore, we perform
two analytically independent collapsing steps.

Instanced duplicates by definition have the same opera-
tions applied to them as do their templates. Hence, a row-
wise collapse merges all instances into their parental com-
ponents while remaining components are left unmodified.
This significantly reduces the matrix height, in the case of
the Medieval dataset from 189 to 28 rows. Operations in
neighboring frames that do not affect the same correspon-
dence flow are considered independent. It is thus possible to
perform a column-wise collapse given the operations at #; do
not collide with those at#;_ and vice versa, i.e., when oper-
ations do not occur in neighboring frames simultaneously.

6. Timeline Visualization

Representing events in a timeline visualization is a com-
mon way of abstracting complex temporal interactions into
a meaningful easily understandable flow. Apart from linear
dependencies, timelines can also display hierarchical infor-
mation [SNF10] and even be used as a collaboration plat-
form [BBB*10]. In computer graphics, timelines are mostly
used for animation compositing such as is the case of many
3D authoring tools. We have chosen a hierarchical timeline
as it matches the linear succession of the input data, yet en-
ables us to display dependency relationships between com-
ponents and their groups, see Fig. 2. Such a timeline encour-
ages both manual exploration and automated playback. Our
viewer, similarly to [DKP11], provides a main blending pre-
view at the top and a sequence of thumbnail models ordered
from left to right underneath. In addition, the reverse engi-
neered provenance timeline is at the bottom. Models are ini-
tially colored based on their independent segmentation using
arandom color scheme, but once the correspondence estima-
tion has been completed, the colors are consistent across the
frames. It is possible to select a single component or their
groups to highlight the corresponding parts in the remain-
ing frames. The thumbnails can be navigated synchronously
while exploring the main preview independently.

6.1. Timeline interface

The timeline is divided into equally spaced buckets that il-
lustrate the elapsed time between neighboring frames, see
vertical lines in Fig. 1. This is an approximation as there is
no requirement for the input models to be developed in equal
amounts of time. Alternating rows signify a correspondence
flow each. Life-span of a component is visualized as a col-
lection of cubic Bézier curves forming a path that can di-
verge from the assigned timeline row whenever a duplica-
tion has been detected. These are laid out from top to bot-
tom in the order of a template followed by repeated copies
and general duplicates. Their coloring is consistent with the
correspondence assignment in the thumbnail 3D views. In-
stanced duplicates have decreased opacity for easy identi-
fication even when the timeline is not collapsed as shown
in Fig. 2. Double clicking on a path highlights the assigned
components in the thumbnail views. Vectorized icons of the
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Figure 6: Repeated copying blending (detected here on the
Medieval dataset, see Fig. 2) is interpolated sequentially.

detected editing operations, as listed in §5.1, are placed on
top of the paths. From left to right the additions are laid out
first, followed by relative changes in polycount and size with
translations being the last between pairs of 3D models. Such
an arrangement ensures that for a duplication the relative ge-
ometrical changes appear only once in the timeline while the
transformations are placed directly on top of the matching
paths. Even though there is no evidence that the events have
happened in this particular order, it declutters the interface.

Playback blending. Just like in 2D animations, the time be-
tween two successive keyframes is linearly interpolated so
that components at ¢; are morphed into their known state
at ¢j,1 via the detected editing operations. In addition, the
opacity of a component C; ;_ changes from 100% to 0%
while for C; ; it changes in reverse. Those components that
do not change are shown in gray so that modifications stand
out during playback. Repeated copies, however, change their
opacity one-by-one for a pleasing visualization of the suc-
cessive construction, see Fig. 6. Even though linearly inter-
polated, more emphasis can be put on certain operations by
slowing down the playback speed for desired event classes.

7. Evaluation

We evaluated our tool on a variety of modeling sequences
created by several artists in Autodesk Maya, Pixologic
ZBrush, Trimble Sketchup, Blender and Luxology Modo au-
thoring tools. Each sequence provides a distinct set of chal-
lenges including detailing, large number of polygons and
even organic sculpting. Tab.2 lists statistics for these se-
quences while Fig. 8 shows the implied timelines and some
of the input models with assigned correspondence coloring.
Even if the actual editing history existed, it would repre-
sent only one plausible evolution that achieves the same se-
quence, hence we do not attempt ground truth comparison.
For Eq. (4) we used o = 0.3 and for the repeated copying
detection in §5.2, a zero tolerance threshold ¢ = 0.0001.

The timeline reveals deformations and other modifica-
tions that are hard to detect by visual inspection alone. For
example, between the first two keyframes of the Medieval
dataset (top of Fig. 8), there is a vertical stretch of the facade
geometry with an upward translation of its roof structures.
Even in a direct side-by-side comparison it is difficult to no-
tice this, yet both the timeline and the blending preview re-
veal it precisely. At close inspection of the Brick and En—
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gine datasets in Fig. 8, it can be also seen that the logos
were created separately and put in place once completed.

An interesting revelation comes from the Portico
dataset consisting of 158 distinct models, the largest se-
quence we have tested with our system. A common practice
when creating massive 3D models is to temporarily disable
or even remove certain parts of a scene in order to lower its
memory footprint, hence unburden the editor. This hidden
geometry is then reintroduced at a later stage when the full
scene is required. As visible in the first 29 keyframes (repre-
sented by 7 green thumbnails at the beginning of the last se-
quence in Fig. 8), the modeler created a set of pillars with at-
tempted detailing, which then disappear altogether. Later the
columns reappear, this time, however, with a different height
and shape. Unlike the common practice described above, our
tool identifies this as a massive deletion followed by an addi-
tion as the reintroduced geometry significantly differs from
that of the supposed original. We have reached out to the
modeler who confirmed that it was indeed the intention to
delete the first version of the columns so that the positioning
and the height of the roof would govern their construction.

MeshGit comparison. MeshGit [DP13] focuses on vertex-
level differencing and merging, hence a complementary
reverse engineering subproblem. Being higher-level and
component-based, our detection is faster and scales to big-
ger datasets. For example on shutt le, their largest exam-
ple evaluated on comparable hardware, it takes 9.7 minutes
vs. mere 14 seconds in 3D Timeline. On our datasets where
there are strong changes in adjacency of vertices and faces,
MeshGit matches large areas that do not correspond as repo-
sitioned, added or deleted, see Engine in Fig.7. We can
also handle modifications that translate components signif-
icantly, the main limitation discussed in their paper. Never-

MeshGit 3D Timeline

shuttle

Engine 1-12

Figure 7: MeshGit comparison with their shutt le model
and the first 12 frames of our Engine dataset. MeshGit
shows changes in adjacency (red/green), geometry (blue)
and sequential changes (orange). Timeline shows unmodi-
fied component groups (gray) and modified (corresponding
colors). More examples are in the supplemental materials.
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Figure 8: Results: Collapsed timelines for Medieval, Brick, Engine, Cruciformand Portico datasets as presented
in Tab. 2. Character sequence is shown in Fig. 1. Full timelines can be found in the supplemental materials. Please note that
for brevity only a subset of the keyframes are shown for the Engine, Cruciform, and Portico datasets. See supplemental
materials for full timelines or zoom in on PDF.
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theless, in most cases MeshGit provides valuable insight into
fine-grained editing that our solution does not. Note that it is
conceivable to use 3D Timeline for component-based analy-
sis and MeshGit for vertex-level differences in conjunction.

User study. In order to evaluate the usability of our tool, we
have conducted a preliminary user study with 8 postgraduate
researchers in the field of computer graphics. Each partici-
pant indicated an intermediate or an expert level of experi-
ence in 3D modeling. To compare and contrast the timeline,
a multi-view interface with only a basic side-by-side visu-
alization and interlinked navigation was used. Participants
were given a sample dataset before each trial to familiar-
ize themselves with the interface. The task was to answer a
short quiz with regards to the modeling provenance. After
each session a system usability scale (SUS) [Bro96] ques-
tionnaire was handed out. The order of the datasets as well
as of the interfaces was shuffled according to Latin square.

Table 1: Pilot user study results based on 3 quiz questions
in a multiview and a timeline interface, time to completion
& the system usability scale (SUS) scores. T = true, F = !T.

Multiview Timeline
Experience | Q1 Q2 Q3 Time[m] SUS | Q1 Q2 Q3 Time[m] SUS
P1  ltermediate F F F 59 7000 F ' T T 33 675
P2 Expert T T T 18 7500 T T T 25 375
P3 Intermediate T T F 31 750 F T F 20 725
P4 Intermediate F F T 23 675 F T F 43 675
P5  Expert F F F 36 445 T T F 15 715
P6  Intermediate | F F T 43 475 T F F 26 600
P7 Intermediate F F F 24 3715 T T F 19 850
P8 Intermediate F F T 15 375] F T F 15 875
AVG 25% 25% 50% 3.1 56.8|50% 88% 25% 24 694

The overall average success rate of the quiz in the time-
line interface was 54% versus 33% in the multiview. As
shown in Tab. 1, the timeline also scored better in terms of
the system usability scale reaching grade B, i.e., an above
the average user interface for the task at hand. According to
this score, the users found it easy to familiarize themselves
with the interface. In general, they also indicated that they
would not need any technical assistance and would happily
use it again. Note that the user study had only very small
sequences with 6 consecutive frames to give the baseline
viewer a fair chance. In our experience, on longer sequences
(15+ frames), visual inspection becomes impossible.

7.1. Discussion

As shown in Tab. 2, the performance depends on the number
of polygons, the number of components and their structural
organization. On input, we do not make any assumptions
about the temporal coherence of modeling effort neither rely
on any scene graph organizational structures. If the frames
are too close to each other, i.e., identical, our algorithm de-
tects no changes and those are collapsed. If they are too far
apart, i.e., too dissimilar, at some point the correspondence
estimation will fail, hence components would be marked as
deleted in one and added in the subsequent frame.

(© 2014 The Author(s)
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Limitations. The system in its current form cannot imply
the relative ordering of operations between two frames. For
example, it cannot be reliably decided whether an increase in
the number of polygons has happened before or after a dupli-
cation. Therefore, future study into modeling behavior based
on software instrumentation might provide evidence for pat-
terns of events that occur more frequently than others. Sim-
ilarly, the choice of a template component for duplication is
arbitrary, although, it might be possible to devise additional
sets of rules to break ties. Further, we do not detect any join
operations such as multiple components becoming a single
manifold surface. This is especially noticeable in the most
challenging Portico dataset where most of the facade is
modelled as a single continuous mesh. Our solution can suc-
cessfully track major changes across most frames, however,
in the 158 models it looses track in 4 instances visible as
steps at the bottom of Fig. 8. Even though the correspon-
dence estimation is greedy, hence not globally optimal, it
is robust and together with our changes detection can un-
cover even non-rigid transformations such as bending. Un-
like [PMW*08], however, the tight threshold of our repeated
copying detection does not support approximate regularities.

8. Conclusions

We presented a tool for reverse engineering of a part-based
provenance from linear sequences of 3D models. Our ap-
proach does not require recording of individual edits dur-
ing construction, hence, it is applicable to all sorts of legacy
datasets. The tool was successfully tested on 6 construction
sequences spanning architectural modeling, CAD prototyp-
ing and even free form sculpting. Our pilot user study sug-
gests this tool to be usable by untrained users who preferred
it over a standard side-by-side visualization. This tool can be
useful to artists revisiting modeling processes to learn from.

Future work. A simple addition in the future will be ap-
plication of a heat map to visualize the rate of change on
the morphed model itself. Further, we plan to add semantic
differencing at the level of individual vertices and faces af-
ter the part-based correspondence has been established. An
interesting avenue will be the exploration of automated in-
tention preservation while modifying the timeline. We hope
this type of UI will motivate software vendors in the future.
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Table 2: Statistics for the test sequences evaluated on a Thinkpad X230 with Intel Core i7-3520M CPU @2.90 GHz with 16 GB
RAM on Windows 8. From left to right: the number of frames in a sequence, the cumulative number of polygons, the number of
detected components, duration of the correspondence estimation, duration of the timeline analysis, sum of correspondence and
analysis and the overall number of components processed per second (Components / (Correspondence + Analysis) x1000).

Dataset Frames | Polycount | Components | Corr. [ms] | Analysis [ms] | Total [s] | Throughput [C/s]
Medieval 6 16,005 510 51 40 0.09 5,604
Brick 16 16,703 141 47 25 0.07 1,958
Engine 55 | 3,414,103 2,460 1,435 512 1.95 1,264
Cruciform 74 924,123 23,695 74,712 1,140 75.85 312
Portico 158 | 2,442,104 3,622 1,908 784 2.70 1,346
Character 9 | 7,609,539 189 6,685 1,875 8.56 22
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