

Supporting Scalable Peer to Peer Virtual Environments using Frontier Sets
Anthony Steed1, Cameron Angus2

Department of Computer Science, University College London

ABSTRACT
We present a scalable implementation of a network partitioning
scheme that we have called frontier sets. Frontier sets build on the
notion of a potentially visible set (PVS) [1][22]. In a PVS, a world
is sub-divided into cells and for each cell all the other cells that
can be seen are computed. In contrast, a frontier set considers
pairs of cells, A and B. For eac`h pair, it lists two sets of cells, FAB
and FBA. By definition, from no cell in FAB is any cell in FBA
visible and vice-versa.

Our initial use of frontier sets has been to enable scalability in
distributed networking. In this paper we build on previous work
by showing how to avoid pre-computing frontier sets. Our
previous algorithm, required O(N3) space in the number of cells,
to store pre-computed frontier sets. Our new algorithm pre-
computes an enhanced potentially visible set that requires only
O(N2) space and then computes frontiers only as needed.

Network simulations using code based on the Quake II engine
show that frontiers have significant promise and may allow a new
class of scalable peer-to-peer game infrastructures to emerge.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; I.3.2 [Computer Graphics]: Graphics
Systems

Keywords: frontier sets, visibility partitioning, network
scalability, networked virtual environments.

1 INTRODUCTION
Multi-user online simulations and games pose a number of
challenges to systems designers [18]. One challenge is that of
scaling the system to large numbers of users. Two problems are
key: the simulation or game mechanics may require computation
of O(N2) in the number of participants; and maintaining the game
state potentially involves O(N2) remote interactions across a
network. Simulations of more than a few tens of participants have
usually required dedicated networks and assumptions about
resource availability and interaction capabilities of the simulation
client. Alternatively they have had to limit the interactivity of the
simulation or use a non-real time simulation.

Networked virtual environments (NVEs) often implement an
area of interest management scheme that tries to rapidly identify
participants that do not need to communicate [16]. A common
strategy is to allocate each participant to one of a set of pre-
determined regions of space and then only enable communication
between participants who share the same region.

In [20] we introduced the concept of a frontier set. Frontier sets
use a potentially visible set (PVS) and provide a new data

structure that allows pairs of entities to negotiate a criterion, a
frontier, which either can test very rapidly to ensure that no
interaction is necessary between them. This criterion will typically
be valid for several seconds.

Figure 1 gives an example using two players, A and B, in an
online game. Two frontiers have been created and both A’s and
B’s clients know about the existence of these frontiers. Because
no cell in A’s frontier is visible to any cell in B’s frontier, as long
as A stays in his frontier and B stays in her frontier, they never
have to send any information. As soon as one of A or B leave their
frontier, they either have to renegotiate frontiers, or they can
potentially see each other and thus have to send information to
each other.

The frontier concept is very general, and in the previous paper
we showed how to build a particular type frontiers using a region
growing approach. We pre-computed a complete set of frontiers
which required O(N3) storage space in the number of cells in the
world. To be usable with reasonable sized world this required
compression of the original PVS.

However, many different types of frontiers exist, and in this
paper we present an alternative that does not require such
expensive storage space. Indeed it doesn’t pre-compute the set of
frontiers, but builds an intermediary data structure called an
enhanced potentially visible set (EPVS) which only requires
O(N2) space. The frontiers themselves are calculated only when
necessary at run-time.

In Section 2 we describe related work. In Section 3 we give a
brief introduction to the frontier sets data structure and give
examples of how frontiers can be constructed and how they can be
used. In Section 4 we give a new algorithm for constructing
frontiers. In Section 5 we then describe how we can apply
frontiers to NVEs and we detail how we used the game Quake II
[12] as an example. We analyze how frontier sets perform in
Quake II in Section 6. We then discuss further applications of
frontiers and potential avenues for further research in Section 7.

B

A

Figure 1. Example from a simulation of the use of frontiers
within the online multi-participant game Quake II. If A stays in
the light grey region and B stay in the dark grey region then

they never have to send a network packet to each other
because they can never see each other.

1 A.Steed@cs.ucl.ac.uk
2 C.Angus@cs.ucl.ac.uk

ucacajs
UNCHECKED PREPRINT
To appear at IEEE VR2005, Bonn, Germany, March 2005

2 RELATED WORK
Today’s networked games have built upon techniques and
technologies developed for military simulators [18][19]. SIMNET
was an early networked military simulator that was designed for
training small teams [15]. SIMNET used a peer-to-peer system
where each client simply broadcast information about its state on
the network. SIMNET’s underlying network technology was
developed and standardized with the Distributed Interactive
Simulation standard [13]. The core of DIS is the Protocol Data
Unit (PDU), which describes the state of a simulator entity (e.g.
plane, tank or dismounted infantry).

DIS-based systems are a good example of a peer-to-peer system
where every client communicates with all other clients. They
require a lot of bandwidth to cope with the volume of messages.
There is also a general problem in ensuring consistency. Because
every client independently evolves the simulation state based on
information received, it is not guaranteed that any pair of clients
will have the same state. This is especially true if attempting to
deploy such a system over the Internet where packets may be lost
or suffer jitter in delivery time. Finally, safeguards have to be put
in place so clients can’t cheat. A modern game that uses a peer-to-
peer approach is Age of Empires [3].

The main alternative to peer-to-peer systems is client-server
systems. In this type of system all clients connect to a server, and
that server is responsible for computing the state of the game and
distributing it to all the clients. This is the most common
networking model for games. Consistency is no longer an issue
since there is one canonical copy of the game state on the server.
However a server introduces extra latency as any update to the
game state needs to be relayed by the servers. The issue of latency
is very important for real-time games, especially first-person
shooter games which have become very popular in the last few
years [11].

2.1 Partitioning
In order to have environments that scale to large numbers of users
one common approach is to partition the world and only relay a
subset of all events and state to each client [16].

One of the first systems to employ a partitioning scheme was
the NPSNET system [14]. NPSNET divides the virtual world into
fixed sized hexagonal cells. Each participant sends information
(e.g. location updates) to their current local cell but can choose to
receive information from potentially many cells that fall within
their area of interest. The use of fixed-size cells is appropriate for
applications such as outdoor battle simulations where entities
move with predictable speeds and trajectories and where entities
are spread reasonably evenly across the entire space.

In contrast to the regular partitioning scheme of NPSNET, the
Spline system [21] divides a virtual world into arbitrary-shaped
locales that are stitched together using portals. Each locale defines
its own co-ordinate system and participants receive information
from their current locale and its immediate neighbours. The ability
to use variable-sized locales provides additional flexibility in
coping with less predictable entities and is more appropriate for
indoor environments.

2.2 Visibility Partitioning
Partitioning schemes exploit application knowledge about the
probable spatial proximity of participants who are likely to want
to interact. NPSNET and Spline used a pre-defined or handcrafted
partition of the space. If the virtual environment itself can be
analysed to determine inter-region visibility then we can use that
information to support network scalability.

A related computer graphics technique is visibility culling [4].
One technique that is often used in networked games is potentially
visible sets (PVS) [1][21]. A PVS can be used to exclude a pair of
entities from consideration for simulation purposes because they
are not mutually visible. However this visibility must be evaluated
every time the entities concerned move.

The RING system exploits a PVS data structure to enable
scalability of a client-server virtual environment [7][8]. In the
RING system, a server culls messages if it knows that a client
can’t possibly see the effect of the message.

3 FRONTIERS

3.1 Potentially Visible Sets
A potentially visible set (PVS) exploits the fact that from any
point of view in a dense architectural environment much, if not
most, of the rest of the environment will be occluded [1][21]. If
the environment is divided in to regions of space (or cells) then
for any cell, it will be possible to identify openings (or portals)
through which other cells can be seen. For any cell, it is possible
to explicitly compute which other cells are visible from that cell,
because if a cell is visible then there must be a line of sight
through all the portals between them.

A B C

D E F

G H I

Figure 2. An example of part of a potentially visible set. From cell

A, only cells B, C and E are visible.

The calculation of a PVS can be done either automatically
[1][21] or by hand for smaller models. For the purposes of this
paper we assume that a PVS already exists.

In introducing frontiers, we will first assume that the PVS is
symmetric; that is, if cell A can see cell B, cell B can see cell A.
In a more general system portals may be uni-directional in which
case the PVS will be asymmetric. Even if portals are bi-directional
some asymmetries may arise because of the complexity of the
visibility analysis. For example, the PVS in the game Quake II
(see Section 5) is asymmetric and the asymmetries give a slightly
conservative visibility estimate. Asymmetries can be dealt with by
minor extensions to the algorithms we will describe.

3.2 Frontier Definition
A PVS will be based on a cell-based sub-division of the world. A
frontier is defined relative to pairs of cells in that subdivision.
Given two cells A and B, a frontier comprises two sets of cells
FAB and FBA such that no cell in FAB is visible to a cell in FBA and
vice-versa. For cells A and B, FAB ∩ FBA = ∅, otherwise any cell
in the intersection must be visible from both FAB and FBA. Figure
3a gives an example of a frontier. We will use the term frontiers to
refer to a pair of such sets, or to only one of the sets when the
meaning is clear. The complete set of frontiers for a whole
environment will be referred to as a frontier set.

There are potentially many frontiers for a pair of cells. No
frontier will exist between two cells if the two cells are visible to
each other. If B is not in the PVS of A, then frontiers can be
initialised with FAB = A, FBA = B. In Figure 3 we see the frontiers
for two cells A, I. No frontier would exist between cells D and H
because they are mutually visible.

3.3 Example Usage
Consider two users moving around the environment depicted in
Figure 3a. If Anne is in cell A, and Bob is in cell I at time t0 then a
frontier can be established, FAI = {A,B,C,F}, FIA = {G,H,I} as
shown in Figure 3a. If Anne remains in FAI and Bob remains in
FIA then they can never see each other. If this were a networked
virtual environment this would mean that if Anne and Bob both
exchanged location information at t0 they would not have to send
any further updates.

a. b.

c. d.

A B C

D E F

G H I

A B C

D E F

G H I

A B C

D E F

G H I

A B C

D E F

G H I

Figure 3. An example of frontiers in use. As users Anne and Bob
move between cells, frontiers can sometimes be established. a)
Anne and Bob are in cells A, I respectively. A frontier exists FAI =

{A,B,C,F}, FIA = {G, H,I}. b) A frontier exists FEH = {A,B,C,E,F}, FHE =
{H,I}. c) No frontier exists because cell D can see cell H. d) A

frontier exists FDI = {A,B,C,D,E,F} and FID = {I}.

If either Anne or Bob leaves their frontier, then one of two
situations arises: either a new frontier can be set up between the
two cells Anne and Bob are currently in, or they can see each
other. In Figure 3b, at time t1, Anne leaves FAI established at t0 and
enters cell E. At this time Bob is in cell H. There is a new frontier
FEH = {A, B, C, E, F}, FHE = {H, I}.

At time t2, Figure 3c, Anne moves to cell D. There is no frontier
between cells D and H because the cells are mutually visible. At
time t3, Figure 3d, Bob moves to cell I. A frontier can be
established FDI = {A, B, C, D, E, F} and FID = {I}.

Pseudo-code for an algorithm to implement this is given in
Figure 4. A client calls SendNetworkUpdate each frame.
Independently of this, they can receive an update from the
network which triggers ReceiveNetworkUpdate. The main job of
SendNetworkUpdate is to establish if, since the last frame, this
client or the other client have left the agreed frontier. If they have,
they get rid of the current frontier. If there is no current frontier
then it sends an update to the other client. Finally it tries to
establish a new frontier with the current cells for this client and
the other client. The process of building frontiers, that is the
implementation of the function AttemptEstablishFrontierWith-
Other, will be discussed in the next section.

4 FRONTIER CREATION
Section 3 introduced frontiers and suggested a way of using them
for culling events between a pair of users. In this scenario, any
viable frontiers are useful because otherwise the assumption is
that the users can see each other. For example, a frontier
consisting of just the two original cells themselves is a viable
frontier if the two cells cannot see each other. However the

example scenario also suggests that the best frontiers for a pair of
cells are those that are expected to be viable for longest given a
predicted or observed model of movement of users around the
space. A good approximation to this can be achieved by trying to
achieve frontiers where the two halves are roughly equal in size,
and as large as possible.

Another issue that we have to address is at what point should
we construct the frontiers. In the event culling example, the actual
frontier doesn’t need to be calculated until it is known what cells
the two users are in. However if we wish to create a good frontier
this may take more time than we have available in a real-time
simulation.

In [20] we outlined a process for pre-computing the complete
frontier set. If N is the number of cells, this process required
O(N3) time to compute and O(N3) space to store, because for
every pair of cells, every other cell needed to be classified as
being in one frontier, or the other, or neither. Thus for reasonably
sized worlds, such as those encountered in certain online games,
this necessitated compression of the PVS.

In this section we introduce a new creation method for frontiers.
The main advantage it has is that it does not require O(N3) space.
In fact, it defers creation of frontiers until required. The only pre-
computation required is an enhanced potentially visible set based
on a visibility distance metric.

4.1 Enhanced Potentially Visibility Set
This creation method makes use of a visibility distance metric. A
PVS records all cells that are visible from the current cell. We
interpret that to mean that the visibility distance from A to B
(dist(A,B)) is 1 if B ∈ PVSA. dist(A,A) = 0. If B ∉ PVSA, then
dist(A,B) is the length of the shortest chain of cells comprising, A,
C1, …, Cn, B such that C1 ∈ PVSA, Ci+1 ∈ PVSCi, …, B ∈ PVSCn.
This can be calculated by taking the matrix that forms the original
PVS, setting each element (A,B) to 1 if A ∈ PVSB and setting it to
∞ otherwise, and then running any all-shortest paths algorithm.
We call the final matrix an enhanced potentially visible set
(EPVS).

AttemptEstablishFrontierWithOther(cellThis, cellOther) {
/* Returns a pair of frontiers, if they exist, otherwise a pair of empty
 sets */

}

ReceiveNetworkUpdate() {

cellOther = GetOtherParticipantCurrentCell()
}

SendNetworkUpdate() {

cellThis = GetCurrentCell()

/* If we or other have moved out of frontier, break it down. */
IF (cellThis ∉frontierThis) OR (cellOther ∉frontierOther) THEN {
 frontierThis = frontierOther = ∅
}
/* If no current frontier, send a packet and try to establish one. */
IF frontierThis = ∅ THEN {

SendNetworkUpdateToOther()
(frontierThis, frontierOther) =

AttemptEstablishFrontierWithOther(cellThis, cellOther)
}

}

Figure 4. Pseudo-code for the use of frontiers to limit packet
update information for two moving participants.

Figure 5 Example of part of an EPVS. The figure shows the
distances from cell A to the other cells from Figure 2. These

distances would form one row of the EPVS.

This EPVS data structure requires more space than a PVS,
because the latter is a bit array and the EPVS stores a distance.
Thus the EPVS requires O(N2.log2(MaxDistance(EPVS))) rather
than O(N2). However, as we will see the maximum distance in an
EPVS is not high in the models we have been testing with (the
maximum being 8, see Section 6.1).

4.2 Dynamic Frontier Creation
Once the EPVS is calculated, frontiers can be specified as follows.
Considering two cells A, B:

FAB = { C | dist(A,C) ≤ dist(B,C) – 1} EQ 1
FBA = { D | dist(B,D) < dist(A,D) – 1} EQ 2

FAB and FBA are mutually invisible. To show this, if it isn’t true

then there exist C ∈ FAB and D ∈ FBA such that dist(C, D) ≤ 1.
This implies

dist(A,D) ≤ dist(A,C) + 1 ⇒ dist(A,D) - 1 ≤ dist(A,C)

EQ3
and

dist(B,C) ≤ dist(B,D) + 1 EQ4

From EQ3 and EQ1

dist(A,D) –1 ≤ dist(A,C) ≤ dist(B,C) –1 EQ5

from EQ4

dist(B,C) – 1 ≤ dist(B,D) – 1 + 1 EQ6

and then combining EQ5 and EQ6

dist(A,D) –1 ≤ dist(B,D)

which contradicts EQ2 and the fact that D is in FBA.

To create a pair of frontiers at run-time requires us to iterate
through all cells. For each cell C, we look up dist(A,C) and
dist(B,C) and use EQ1 and EQ2, to add C to FAB or FBA, if
applicable. This requires 2N-2 value lookups, and O(N) storage
space per pair. If there are M clients, each of those clients might
need to do this calculation for M-1 other clients every frame.
However the point of using frontiers is that the re-calculation of
frontiers is done relatively rarely. Also there are several other
processes in the client, such as rendering, that potentially require a
scan of every cell in the spatial partition, so these lookups do not
come at a prohibitive cost.

5 APPLICATION OF FRONTIERS TO QUAKEII
Frontiers have many potential applications. We want to
demonstrate their utility by addressing the issue of scalability for
network virtual environments.

Quake II [12] is a first-person shooter that was originally
released in 1997. It uses a client-server architecture. A machine
can be set up as a dedicated server, or one participant can host a
server. Typical games have around 16 participants.

Quake II is an example of a game that uses a PVS structure.
Primarily this is used to aid the run-time rendering speed because
it allows for rapid culling of invisible parts of a model. It can also
be used to cull moving entities such as participants or projectiles
since these are located inside cells. A subsidiary use of the PVS is
to aid network scalability. The server need only forward packets
to a participant’s client if that participant can potentially see the
entity concerned.

We have adopted Quake II rather than a newer game because id
Software have made the source code for the game and associated
game tools available under the GNU Public License. This has
allowed us to examine the behaviour of the client and server, and
make tests such as using modified PVS files within the run-time
renderer to confirm that they were correct.

Each game map in Quake II has its own static PVS. Typical
map sizes in Quake II are between 1000 and 3000 cells. Figure 7
shows an example part of a PVS.

0 1 1

D/2 1 F/2

2 3 3

2 2

Figure 6. Pseudo-code for the implementation of the function
AttemptEstablishFrontierWithOther. The function finds a pair of

frontiers if they exist

GetDistCells(cellA, cellB) {
 // Returns the distance between the cells by look up in the EPVS
}

AttemptEstablishFrontierWithOther(cellA, cellB) {

// Returns a pair of frontiers, if they exist, otherwise a pair of
// empty sets.

 frontierA = frontierB = ∅
 IF (cellA ∈ pvsB OR cellB ∈ pvsA) return

 frontierA.push(cellA) // Initiliase the two frontiers
 frontierB.push(cellB)

 FOREACH cellC ∈ {fullListofCells - cellA - cellB} {
 IF (GetDistCells(cellA, cellC) ≤
 GetDistCells(cellB ,cellC) -1) {
 frontierA.push(cellC)
 }
 ELSE IF (GetDistCells(cellB, cellC) <
 GetDistCells(cellA ,cellC,)-1) {
 frontierB.push(cellC)
 }
 }
}

Figure 7. The PVS of a single cell in the QuakeII game map q2dm4.
The black square is the cell, and the light grey area the PVS

5.1 Network Trials
We have tested the frontier set concept by using network logs of
groups of participants using Quake II. Staff and students at UCL
were invited to take part in a Friday afternoon deathmatch on a
Quake II server. We used the q2dm3, q2dm4 and q2dm8 maps
that are included with the retail version of Quake II. A time limit
switched between these maps at five-minute intervals. We invited
participants for a one-hour session, though many connected early
to practise, and some stayed late to settle grudges. Some
participants connected from home or student halls, though most
were on the local area network. For the analysis in Section 6.3 we
have focused on three of the five-minute game periods where
there were 16 or more participants connected.

The game clients were not customized, but were patched to the
latest binary version (3.20). The game server was compiled from
the available source code (3.21). It was a slightly modified version
that recorded for each server frame (i.e. at 10 Hz) all the
participant positions, and the corresponding PVS cells. These logs
were then used off-line to compute how many packets would be
sent under different client-server and peer-to-peer schemes.

From the logs files we then ran a series of simulations of
network behaviour for five schemes:

Client-Server: game clients send a packet describing their
participant’s position to the game server at the game frame rate.
The server immediately relays packets to those other game clients
that might see the participant’s new position.

Client-Server Aggregated: game clients send a packet
describing their position to the game server at the game frame
rate. The game server accumulates packets and once a frame sends
one packet back to each game client describing the behaviour of
all other participants if any are visible.

Naïve Peer-to-Peer: game clients send a packet to every other
game client at the game frame rate.

Perfect Peer-to-Peer: a theoretical game client that sends a
packet to only those game clients who would need it at the game
frame rate.

Frontier-Based: a game client that sends a packet to only those
game clients who need them, or sends a packet to maintain a
frontier.

Client-server and naïve peer-to-peer represent the most
commonly used networking models. Client-server aggregated is
actually how Quake II works: it packages together all the position
information for visible participants and returns it to the client at

the game frame rate. In the simplified networking model, this will
be impossible to beat by any other technique, but in real situations
it introduces considerable latency into the game. It does of course,
also use larger data packets, and this complicates issues. In our
analysis we have pessimistically assumed that aggregated packets
take up no more resources than standard packets that contain the
data for a single client. We return to these issues in Section 7.1.

The perfect peer-to-peer is impossible to implement because in
order to decide whether to send a packet to another client it is
necessary to already know that clients position. This case is
included for comparison with frontiers.

We expect that the frontier peer-to-peer will send significantly
fewer packets than naïve peer-to-peer. Of course, all the peer-to-
peer systems have lower latency than the client-server approaches.

6 RESULTS FROM QUAKE II TRIALS
The three maps q2dm3, q2dm4 and q2dm8 were chosen as they
cover a range of different styles of map. q2dm4 is an extensive
map that is largely two-dimensional. In contrast q2dm8 is a
compact map with multiple vertical levels with little visibility
between the levels. q2dm3 is a compact level with a few examples
of vertical complexity, but also strong occlusion between different
regions.

6.1 EPVS and Frontier Properties
Table 1 shows statistics for the EPVS and frontiers calculated for
the maps q2dm3, q2dm4 and q2dm8. The maximum width is the
greatest distance between any pair of cells in the graph. We can
see what we might expect; for q2dm3and q2dm8, which are the
compact levels, the maximum width is 4 and 5 respectively. For
q2dm4, which is much more extensive, the maximum width is 8.
We also give the average distance between a pair of cells. This
gives us an impression of how dense the maps are. The higher the
number, the better we expect frontiers to work because it indicates
that players are likely to be remote from each other on the
visibility metric.

Figure 1 showed a pair of frontiers for the map q2dm4. Because
the maps in Quake II show a lot of inter-cell visibility over quite
long distances, often across the whole map, we find that the
frontiers often show quite ragged shapes where it wouldn’t be
possible for a participant to walk to every cell in the frontier
without exiting the frontier. This is actually a feature because
participants are teleported across the map when they are shot.

Map Cells

EPVS
Max

Width

EPVS
Av.

Width

Frontier

Density %
Frontier
Size %

q2dm3 666 4 2.2 83.9 38.3
q2dm4 1902 8 3.9 93.0 67.3
q2dm8 966 5 2.2 84.2 68.2

Table 1. Statistics concerning the EPVS and frontiers for q2dm3,
q2dm4 and q2dm8.

Because frontiers represent mutually invisible areas of the map
we look at the proportion of the cell pairs that contain viable
frontiers, and how much of the map is contained in these frontiers.
We should expect that for worlds get extremely large, there will
almost always be a frontier, and the two sets of cells in the frontier
will between them contain close to 100% of the remaining cells.

Table 1 thus presents two sets of statistics about the frontiers.
Frontier Density refers to the percentage of pairs for which a
frontier can be found. Because there are a very large number of
frontier pairs to compare, these values are calculated by sampling
100,000 pairs of frontiers by choosing the two starting cells at
random. We see that for the spread-out q2dm4 for approximately
93% of pairs of cells, a frontier can be found. Even with the
densely packed q2dm3 and q2dm8, for around 84% of pairs of
cells a frontier can be found. Of course frontiers can vary in size
greatly, from a single cell to a large section of the map. Thus
Frontier size refers to the average size of a frontier. This is the
percentage of cells on the map that are in either of the sides of a
frontier on average. It gives an estimate of how efficient the
separation of frontiers is. In extremely large worlds, this would
tend towards 100%. In q2dm4 and q2dm8 we see that
approximately 68% of the cells are in one or other of the frontiers.
One rough interpretation of this is that each player can cross one
third of the map before the frontier is invalid. In q2dm3 we see
that on average 38% of cells can be added to one of the frontiers.
This is quite low and reflects the fact that q2dm3 is compact, and
more so than q2dm8, it has long lines of sight crossing large areas
of the map. However, as we will see in Section 6.3 these frontiers
were still very useful for culling network packets.

6.2 Frontier Usage
From the game server logs we were able to simulate behaviour of
the frontier algorithm for a multi-participant situation. Figure 8
shows a sequence of positions of two participants in the game.
Two participants repeatedly negotiate a frontier, and then
eventually can see each other and must send packets continuously.
Although the panels show several re-negotiations of frontiers it
should be made clear that in real-time these happen roughly 5-10
seconds apart.

The panels in Figure 9 visualize a complete group of 16
participants in the game. We see a variety of types of groups:
large mutually visible groups, small groups and isolated
participants. Mutually visible groups have to keep each other up to
date every frame. Isolated participants often keep frontiers with
every other participant for quite long periods of time. When a
participant is killed and teleported across the map to a new start
point we see a “starburst” of communication as it has to relay its

new position to every other participant and establish the relevant
frontiers.

6.3 Comparison of Networking Schemes
From the simulations we were able to compare the networking
schemes. Throughout the analysis we have used a simplified
networking model that assume that clients send and receive
packets at the server’s frame rate (10Hz – the actual server rate for
QuakeII). We also assume that all communication takes place
within a server frame (100ms) so that we do not have to consider
latency when we are communicating frontier information. We
discuss this issue in Section 7.1.

a. b.

c. d.

Figure 9. Sequence of four panels showing a sixteen-participant
situation. Panels a) and b) show typical situations with a few small

clusters of players. In c) we see a situation where a participant
teleports across the map after being killed requiring them to re-

establish frontiers with all other participants. In d) which depicts the
subsequent game frame, that participant only has to continue

communicating with three other participants.

As discussed in Section 5.1, a client-server system that
aggregates packets is bound to result in fewest packets since only
one packet need be sent and at most one received per frame,
resulting in O(N) packets. However, in our simplified model, this
is at the expense of an average 50ms increase in latency over the
latency for a standard client-server system. A peer-peer system

a. b. c. d.

e. f. g. h.

Figure 8. Sequence of eight panels showing two participants A and B (A on the left) and an example sequence of frontiers. Lines
indicate communication between A and B a) A and B see each other, so they must communicate. b) A frontier is found, this is the last
communication. c) This frontier is still valid, there is no communication. d) B exits the previous frontier but a new frontier is established.

e) A exits the frontier and another is established. f) This frontier remains valid. g)&h) A and B can now see each other.

with no scalability must send and receive O(N2) packets a second,
but the latency is low.

Map Technique
Total

Packets
Sent

Packets per
Frame

Packets per
Client per

Frame
CS 223709 75.1 4.7

CSA 92869 31.2 1.9
NPP 716822 240.7 15.0
PPP 176098 59.1 3.7

q2dm3

FB 256040 86.0 5.4
CS 141070 47.6 2.8

CSA 87671 29.5 1.8
NPP 769538 259.7 15.7
PPP 91946 31.0 1.9

q2dm4

FB 128482 43.4 2.6
CS 235368 79.3 5.2

CSA 89414 30.1 2.0
NPP 653608 220.1 14.4
PPP 189966 64.0 4.2

q2dm8

FB 266222 89.7 5.9

Table 2. Results of the analyses of the five networking schemes
over the three selected maps. CS = Client-server, CSA = Client-
Server Aggregated, NPP = Naïve Peer-to-Peer, PPP = Perfect

Peer-to-Peer, FB = Frontier-Based

Table 2 shows comparisons of the five techniques described in
Section 5.1. For each map and each technique it gives the total
number of packets sent over the five minutes of the game. It gives
the packets per frame, and the packets per client per frame. As
expected, naïve peer-to-peer always produces significantly higher
numbers of packets than any other scheme. The first point to note
is that frontier-based networking performed well compared to the
perfect peer-to-peer technique. Although it generates up to 45%
more packets it is certainly not similar to naïve peer-to-peer. The
most notable point though is the frontier-based performs
comparably well to the un-aggregated client-server technique, and
even beats it on one map.

7 DISCUSSION AND FURTHER WORK

7.1 Network Issues
In our analysis we have used a simplified networking model
where the clients and servers all update at a fixed frame rate and
all communication is completed within the frame time. Obviously
this is a simplification and clients will vary in their latency and
will not have the same frame rate as the server. For the purposes
of the validity of the frontier-algorithm this means that we must
deal with latency in communication of frontiers. When there is
latency, the frontier might become invalid on one client but the
other is unaware and does not send the required information. This
means that a participant A leaving a cell might move to a location
where they can see B, but will not actually see them until a packet
has been sent to and received from B. B also potentially sees an
incorrect status of A, but only for the time it takes for the update
to travel from A to B. It is worth noting that this is no worse than
the similar latency issues with server-based filtering: the server
does not have the up to date state for the clients for which it is
returning filtered data to.

The problem is perhaps best tackled by predicting ahead that
the client is going to leave the frontier and speculatively re-
negotiating the frontier. This could be done by positional
extrapolation or by a scheme by which clients always test the
frontier when they reach one of its boundary cells.

A second set of networking issues revolves around the security
and manageability of peer-to-peer services. We have suggested
that peer-to-peer is preferable because it is lower latency.
However there are several problems in implementing peer-to-peer
systems. The first problem is in synchronizing state amongst
multiple hosts. This was first tackled in the bucket
synchronization mechanism implemented in the MiMaze system
[5]. MiMaze was one of the first fully distributed multi-participant
games on the Internet. The second problem is that of cheating. If
the clients themselves are compromised, or the traffic between
peers is modified, the state can be subverted to one participant’s
advantage. This is being tackled within the networking
community [10].

To counter the problems of implementing completely
decentralised peer-to-peer networks there is a possibility of hybrid
architectures that use both peer-to-peer and client-server
strategies. For example, a server could be used to synchronize
critical game state such as keeping score and starting game
sessions, but the clients could also communicate some state peer-
to-peer so that they can render the game state as close to the
server’s canonical state as possible.

Finally, although in our analysis client-server aggregated
performs best overall, we note that the actual situation is more
complicated. As noted in Section 5.1 for our analysis we
pessimistically assumed that aggregated packets are no larger than
individual packets. This is pessimistic, from our point of view,
because in reality, if packets are aggregated by the server, they
may subsequently be fragmented by the network layer because
they may be larger that the allowed maximum packet size. So in
actuality, client-server aggregated will perform somewhere
between the idealised client-server aggregated we have presented,
and the normal client-server which relays all packets as required.

7.2 Other Applications
We have introduced the frontier sets and its application for culling
of packets network simulations based on the visibility between
clients. As is, the algorithm could be used in any situations were a
PVS, or similar data structure for culling structure, exists.

Potentially it could be used for other network situations where it
is useful to cull pairs of entities so that they need not be
considered for a potentially expensive pair-wise computation.
Essentially all that is required is some metric by which it can be
determined that two entities do not need to communicate. For
example, frontiers could be built to identify mutually inaudible
regions which would help with provisioning online environments
with audio [9]. In this case the criteria for two frontiers to be valid
would be that no cell in one was audible to any cell in the other.

7.3 Other Construction Techniques
We note that there are several other potential strategies for
building frontiers. If there is a complete cells and portals data
structure, then it is perhaps possible to analyse the graph itself to
identify clusters of cells amongst which there is strong visibility,
but which are not easily visible from other clusters. For example,
game maps are sometimes arranged in a hub and spoke
arrangement with a central area through which there is a lot of
traffic, with sub-areas connected by corridors. As another
example, in models of buildings it should be possible to find the
intra-floor portals and isolate each floor for individual
consideration.

More generally, it may be possible to partition the world via a
hierarchical data structure such as oc-trees [17] and build frontiers
for partitions of that data structure rather than the individual cells
themselves.

Finally we note that if a cell C is in a frontier FAB, then it is
likely that cell A would be in FCB. Thus instead of starting from
scratch for each pair, it may be possible to re-use a frontier and
adapt it by removing conflicting cells and adding others.

8 CONCLUSIONS
We have introduced frontier sets: a simple but powerful visibility
structure and we have shown how they can be constructed at run-
time. For a pair of nodes, a frontier identifies two regions of
mutual invisibility containing those nodes. For any application
where there is a need to cope with a large number of entities in a
space that lends itself to spatial partitioning, frontiers should be a
useful extension to enable scalability.

We have demonstrated the use of frontiers in simulations of the
networked game Quake II. Networked games are a good example
of a problem that involves multiple entities, all of which can
potentially interact. This leads to an O(N2) simulation problem.
Fortunately network games often exhibit spatial separation of
participants, so that we can usually discount many pairs of
participants from potentially expensive operations such as
communication of network state. We demonstrated that a network
protocol based on frontiers has performance close to a client-
server system and close to an ideal model of peer-to-peer systems.
An aggregated client-server system is still faster than frontier-
based system, but to counter this, frontier-based has a significantly
lower latency of communication. Using frontiers it should be
possible to build a peer-to-peer game that scales more efficiently
than existing peer-to-peer systems.

In order to build frontier sets at run-time, we pre-computed an
enhanced potentially visible set which only requires O(N2) space
in the number of cells. Since many games already require a PVS
with this space requirement, this means that there is very little
space overhead from using frontiers.

In our current work we are planning to apply frontiers to other
simulation situations. We are also attempting to build a peer-to-
peer version of Quake II.

ACKNOWLEDGEMENTS
All the code modifications we made to the GPL Quake II source
code will be available from http://www.cs.ucl.ac.uk/research/vr/.
This work was supported in part by the UK Equator project
(EPSRC Grant GR/N15986/01).

REFERENCES
[1] AIREY, E.J. M., ROHLF, J. H. AND BROOKS Jr. F.P.

1990. Towards image realism with interactive update rates in
complex virtual building environments. Computer Graphics
(Proceedings of ACM Symposium on Interactive 3D
Graphics), 24(2): 41—50.

[2] BAUER, D., ROONEY, S. AND SCOTTON, P. 2002.
Network Infrastructure for Massively Distributed Games. In
NetGames 2002, April 16-17, Braunschweig, Germany,
ACM.

[3] BETTNER, P. AND TERRANO, M. 2001. 1500 Archers on
a 29.8: Networking Programming in Age of Empires and
Beyond. In The 2001 Game Developer Conference
Proceedings, San Jose, CA, Mar. 2001.

[4] COHEN-OR, D., CHRYSANTHOU, Y., SILVA, C. AND
DURANT, F. 2003. A Survey of Visibility for Walk-through
Applications. IEEE Transactions on Visualization and
Computer Graphics, 9(3): 412-431.

[5] Diot, C. and Gautier, L. 1999. A Distributed Architecture for
MultiParticipant Interactive Applications on the Internet. In
IEEE Network, 13(4), 6-15.

[6] FUCHS, H., KEDEM Z.M. AND NAYLOR. B.F. 1980. On
Visible Surface Generation by A Priori Tree Structures. In

Computer Graphics (Proceedings of ACM SIGGRAPH 80),
14(3), ACM, 124-133.

[7] FUNKHOUSER, T. A. 1995. RING: A Client-Server System
for Multi-User Virtual Environments. In 1995 Symposium on
Interactive 3D Graphics. 85-92, April 1995.

[8] FUNKHOUSER, T. A. 1996. Network Topologies for
Scalable Multi-User Virtual Environments. In Proceedings
IEEE VRAIS ‘96, San Jose, CA, April, 1996.

[9] FUNKHOUSER, T.A., MIN, P. AND CARLBOM, I. 1999.
Real-Time Acoustic Modeling for Distributed Virtual
Environments. In Proceedings of ACM SIGGRAPH 1999,
ACM Press / ACM SIGGRAPH, New York. A. Rockwoord,
Ed., Computer Graphics Proceedings, Annual Conference
Series, ACM, 365-374.

[10] GAUTHIERDICKEY, C., ZAPPALA, D., LO, V. AND
MARR, J. 2003, Cheat-Proof Event Ordering for Peer-to-
Peer Games. Draft paper,
http://www.cs.uoregon.edu/~zappala

[11] HENDERSON, T. 2001. Latency and User Behaviour on a
Multiparticipant Game Server. Networked Group
Communication 2001, Third International COST264
Workshop, London, UK, November 7-9, 2001 1-13

[12] IDSOFTWARE. 1997. Quake II.
http://www.idsoftware.com/games/quake/quake2/

[13] IEEE. 1993. ANSI/IEEE Standard 1278-1993, Standard for
Information Technology, Protocols for Distributed
Interactive Simulation, March 1993.

[14] MACEDONIA, M. R., ZYDA, M. J., PRATT, D. R.,
BARHAM, P. T., ZESWITZ, S. 1994. NPSNET: A Network
Software Architecture for Large Scale Virtual Environments.
Presence: Teleoperators and Virtual Environments, 3(4):
265-287, MIT Press.

[15] MILLER, D., AND THORPE, J. 1995. SIMNET: the advent
of simulator networking. Proceedings of IEEE, 83(8): 1114-
1123.

[16] MORSE, K. L., BIC, L. AND DILLENCOURT, M. 2000.
Interest management in large-scale virtual environments.
Presence: Teleoperators and Virtual Environments, 9(1):52--
68, MIT Press.

[17] SAMET. H. 1989. Spatial Data Structures: Quadtree, Octrees
and Other Hierarchical Methods. Addison Wesley.

[18] SINGHAL, S. ZYDA, M. 1999. Networked Virtual
Environments: Design and Implementation. Addison-
Wesley.

[19] SMED, J. KAUKORANTA, T. AND HAKONEN, H. 2001.
Aspects of Networking in Multiparticipant Computer Games.
In Loo Wai Sing, Wan Hak Man, and Wong Wai (eds.),
Proceedings of International Conference on Application and
Development of Computer Games in the 21st Century. Hong
Kong SAR, China, Nov. 2001, 74-81.

[20] STEED, A. AND ANGUS, C. 2004, Frontier Sets: A
Partitioning Scheme to Enable Scalable Virtual
Environments, To be presented at Eurographics 2004 (Short
Paper Presentation).

[21] STERNS, I.B. AND YERAZUNIS, W.S. 1997. Diamond
Park and Spline: Social Virtual Reality with 3D Animation,
Spoken Interaction and Runtime Extendability. Presence:
Teleoperators and Virtual Environments, 6(4), 461-481, MIT
Press

[22] TELLER, S.J. AND SEQUIN, C.H. 1991. Visibility
Preprocessing for interactive walkthroughs. Computer
Graphics (Proceedings of SIGGRAPH 91), 25(4):61-90.

[23] VAN DE PANNE, M. AND STEWART, A. J. 1999.
Effective compression techniques for precomputed visibility.
In Proc. Eurographics Rendering Workshop, June 1999, 305-
316.

