
De�ning Interaction within Immersive Virtual
Environments

by

Anthony James Steed

Submitted to the University of London for the degree of
Doctor of Philosophy in Computer Science

Department of Computer Science

Queen Mary & West�eld College

University of London

Mile End Road

London E1 4NS

September 1996

ii

iii

Abstract

This thesis is concerned with the design of Virtual Environments (VEs) -
in particular with the tools and techniques used to describe interesting and
useful environments. This concern is not only with respect to the appearance
of objects in the VE but also with their behaviours and their reactions to
actions of the participants. The main research hypothesis is that there are
several advantages to constructing these interactions and behaviours whilst
remaining immersed within the VE which they describe. These advantages
include the fact that editing is done interactively with immediate e�ect and
without having to resort to the usual edit-compile-test cycle. This means
that the participant doesn't have to leave the VE and lose their sense of
presence within it, and editing tasks can take advantage of the enhanced
spatial cognition and naturalistic interaction metaphors a VE provides.

To this end a data
ow dialogue architecture with an immersive virtual
environment presentation system was designed and built. The data
ow
consists of streams of data that originate at sensors that register the body
state of the participant,
owing through �lters that modify the streams and
a�ect the VE.

The requirements for such a system and the �lters it should contain are
derived from two pieces of work on interaction metaphors, one based on
a desktop system using a novel input device and the second a navigation
technique for an immersive system. The analysis of these metaphors high-
lighted particular tasks that such a virtual environment dialogue architecture
(VEDA) system might be used to solve, and illustrate the scope of interac-
tions that should be accommodated.

Initial evaluation of the VEDA system is provided by moderately sized
demonstration environments and tools constructed by the author. Further
evaluation is provided by an in-depth study where three novice VE designers
were invited to construct VEs with the VEDA system. This highlighted the

exibility that the VEDA approach provides and the utility of the immersive
presentation over traditional techniques in that it allows the participant to
use more natural and expressive techniques in the construction process. In
other words the evaluation shows how the immersive facilities of VEs can be
exploited in the process of constructing further VEs.

iv

v

Acknowledgements

Many people have in
uenced the �nal form this thesis has taken, and the
author would like to take this opportunity to thank them.

I have been fortunate to have worked in such an interesting �eld over the
past few years with an excellent supervisor in Mel Slater. His knowledge and
attitude towards the subject have made it a continuously stimulating and
frequently entertaining area for study.

I would like to thank all my contemporaries in the ACE lab at QMW
whose diverse interests and backgrounds made working in that environment
so stimulating. Particular thanks go to Yiorgos, Mark, Martin, Alastair
and Amela, for service beyond the call of duty in their criticisms, technical
assistance and proof-reading at various stages of my Ph.D. Thanks also to
all those at QMW who made it a friendly place to work and to everyone who
participated in the reported studies.

At a personal level I would like to thank anyone I have ever bagged a
mountain with. Elevated altitude is an excellent cure for stress.

Thanks also to Rachel for her love and understanding, and for not being
at all scary really.

Finally, thanks must go to my parents for their love and support over the
course of my study.

vi

Contents

1 Introduction 1
1.1 Virtual Environments . 2
1.2 Interaction with Virtual Environments 2
1.3 Scope . 4
1.4 Contributions . 5
1.5 Structure . 6

2 Desktop Interaction 7
2.1 Non-Immersive Interaction . 8

2.1.1 Object Positioning Techniques 10
2.1.2 Navigation Techniques 11

2.2 The Desktop Bat . 12
2.2.1 Navigation . 14
2.2.2 Object Positioning . 14

2.3 Experimental Design . 17
2.4 Results . 21

2.4.1 Eye Time . 21
2.4.2 Cursor time . 21
2.4.3 Eye adjust time . 22
2.4.4 Cursor adjust time . 23
2.4.5 Eye changes . 23
2.4.6 Pick time . 23
2.4.7 Hold time . 23
2.4.8 Cursor vertical move time 23
2.4.9 Eye vertical move time 24

2.5 Conclusions about the Desktop Bat 24
2.6 Limitations of the Desktop Bat 25

3 Immersive Interaction 27
3.1 Immersive Virtual Environment Systems 28

3.1.1 Immersive Virtual Environment Devices 30

vii

viii CONTENTS

3.1.2 Interaction Techniques 31

3.2 Gesture Based Interaction . 34

3.2.1 Gesture Classi�cations 34

3.2.2 Gesture Recognition Software 35

3.2.3 Gesture Based Systems 38

3.3 Presence . 39

3.3.1 Measuring Presence . 40

3.4 Exogenous Factors . 41

3.4.1 Experiment . 42

3.4.2 Results . 43

3.5 Endogenous Factors . 44

3.5.1 E�ect of the Virtual Body 45

3.6 Navigation in Immersive Virtual Environments 46

3.7 The Virtual Treadmill . 47

3.8 Evaluation of the Virtual Treadmill 48

3.8.1 Performance of the Virtual Treadmill 49

3.8.2 Ease of Use of the Virtual Treadmill 49

3.8.3 E�ect of the Virtual Treadmill on Presence 51

3.9 Extensions to Virtual Treadmill Metaphor 51

3.10 Presence Model . 55

3.10.1 Further Results . 57

3.11 Conclusions . 57

4 Programming Interactions 59

4.1 Virtual Environment Scene Description 60

4.2 Virtual Environment Programming Libraries 66

4.2.1 dVS and the VC Library 69

4.3 Visual Programming Languages 72

4.3.1 Visualization of data, program execution or software
design . 72

4.3.2 Visual coaching . 73

4.3.3 Visual Languages for handling visual information and
visual interactions . 75

4.3.4 Visual Languages for actually programming 75

4.4 Data Flow Languages . 76

4.5 Visual Programming for Virtual Environments 77

4.6 Immersive Description of Virtual Environments 80

4.7 Conclusions . 81

CONTENTS ix

5 VEDA 83
5.1 Overview of Abstract Model 84
5.2 Motivation . 86
5.3 Basic Data Flow Model . 88
5.4 Environment Objects . 91
5.5 Standard Components . 95

5.5.1 Participant Sensors . 95
5.5.2 Standard Environment Functions 96
5.5.3 Simple Filters . 101
5.5.4 Gesture Recognition 101
5.5.5 Object Properties . 105
5.5.6 Position Filters . 108
5.5.7 Level of Detail . 108
5.5.8 Hierarchy Manipulation 110

5.6 Example Composite Objects 114
5.7 Standard Environment . 117
5.8 Implementation . 119

5.8.1 dVS Services . 120
5.8.2 VEDA Database Layer 121
5.8.3 Data Flow Function Implementation 122

6 Evaluation 125
6.1 Manipulating Interactions . 126

6.1.1 Discussion . 127
6.2 Example Application . 128

6.2.1 Components . 128
6.2.2 Customization . 129

6.3 A User Study . 131
6.3.1 Application Modi�cation 132
6.3.2 Tools Exploration . 135
6.3.3 VEDA Extension . 139
6.3.4 Conclusions . 140

6.4 VEDA As A Visual Programming Language 141

7 Conclusions 145
7.1 Contributions . 145

7.1.1 Requirements for VEDA 145
7.1.2 Approach . 146
7.1.3 Model . 146
7.1.4 Evaluation . 147

7.2 Discussion . 148

x CONTENTS

7.3 Future Work . 149

A VEDA Functions 151

List of Figures

1.1 Components of a virtual environment generator 3

2.1 Some input devices plotted using the taxonomy of Mackinlay
et al. 8

2.2 Degrees of freedom of the Desktop Bat 13

2.3 The position of the Desktop Bat in the taxonomy of Mackinlay
et al. 13

2.4 Hand on eye metaphor . 15

2.5 Simple camera metaphor . 15

2.6 Relative to cursor metaphor 16

2.7 Relative to world metaphor 17

2.8 Relative to eye metaphor . 17

2.9 Find experimental environment 18

2.10 Data experimental environment 19

2.11 Maze experimental environment 19

3.1 Zeltzer's AIP cube with example systems 31

3.2 Virtual Research Flight Helmet 32

3.3 Division 3D Mouse . 32

3.4 View from far end of cluttered room 42

3.5 View from above down into room with plank over precipice . . 43

3.6 Variation of presence with representation system 45

3.7 Evaluation of navigation by type I error 53

4.1 An example VRML �le . 63

4.2 Example VRML scene viewed in Webspace 64

4.3 A MAZ �le example . 65

4.4 DIVE Tcl extension example 66

4.5 Elements of the decoupled simulation model 68

4.6 Relationship of dVS and the VC library 70

4.7 VC code example . 71

xi

xii LIST OF FIGURES

4.8 xDVISE display of a kitchen showing the scene hierarchy and
a property form . 77

4.9 CUBE-II program for converting fahrenheit to celsius 79
4.10 Lingua Graphica example . 79
4.11 Program described in CAEL-3D 80
4.12 DVISE immersive menu . 81

5.1 Components of the model . 84
5.2 De�nition of the
y in the direction of gaze metaphor 85
5.3 Immersive representation of the virtual treadmill metaphor

recognizer . 87
5.4 Function object with two input data objects and one output

data object . 89
5.5 Immersive representation of an and �lter function 90
5.6 Meta object with two component objects, two interface objects

and an identity object . 93
5.7 Immersive representation of a meta object with an identity

object, but no components or interface 94
5.8 Immersive representation of a meta object with one compo-

nent object and an identity object 94
5.9 Immersive representations of the sensor devices 97
5.10 Immersive representations of the sensor devices 97
5.11 Abstract representation of the standard select tool function

con�guration . 98
5.12 Abstract representation of the two options for pick tool func-

tion con�guration . 99
5.13 Immersive representation of the and �lter function with con-

nections illustrated by tube objects 101
5.14 Abstract de�nition of the virtual treadmill metaphor recognizer103
5.15 Abstract representation of detail of the button objects 110
5.16 Immersive representation of levels of detail of the button objects111
5.17 Immersive representation of the hide and reveal tool functions 112
5.18 Object hierarchy of the button meta object 112
5.19 Object hierarchy of a meta object having nested interfaces . . 113
5.20 Immersive representation of the encapsulate and de-encapsulate

tool functions . 113
5.21 Abstract representation of the slider object 115
5.22 Immersive representation of the slider object 115
5.23 Immersive representation of the scale tool object 116
5.24 Abstract representation of the scale tool object 117
5.25 Immersive representation of the tool box and the contents . . 118

LIST OF FIGURES xiii

5.26 Immersive representation of part of the object store hierarchy 119
5.27 Relationship between VEDA and dVS 120
5.28 Library interfaces between VEDA and dVS 121

6.1 The table tennis application 128
6.2 De�nition of the ball object 129
6.3 Immersive de�nition of the ball object 130
6.4 Proposed revision of the ball's objects hierarchy 133
6.5 The complete revised navigation metaphor 134
6.6 Two iterations of the bat picking metaphor 135
6.7 Abstract de�nition of two versions of the colour tool object . . 136
6.8 Abstract representation of the 3D slider 137
6.9 Immersive representation of the �nal colour tool object 137
6.10 The abstract data
ow model of the arm 140

xiv LIST OF FIGURES

List of Tables

2.1 Mean and standard deviations in seconds of dependent vari-
ables for each eye point metaphor 21

2.2 Mean and standard deviations in seconds of dependent vari-
ables for each cursor metaphor 22

3.1 Virtual Treadmill Performance 50
3.2 Ease of navigation questions 52
3.3 Subjective presence questions 54
3.4 Factors a�ecting presence . 56

5.1 Typical feature sequence of a gesture 104
5.2 Levels of detail for each object type 109

xv

xvi LIST OF TABLES

Chapter 1

Introduction

Looking at the history of computing we can see a transition from systems
based on complex command languages to what Shneiderman calls `direct ma-
nipulation' systems [Shn83]. According to Shneiderman the de�ning features
of such a system are the real-time display of the object of interest, rapid, in-
cremental and reversible actions, and direct manipulation of the object of
interest. Thus the object of interest is displayed and the user can interact
with it using physical gestures, unmediated by a command line interface.
Minsky sums up the aim of such a system as [Min84]:

. . . to create worlds within the computer that can be manipu-
lated in a concrete way using gesture as the mode of interaction.
The e�ect is intended to have a quality of \telepresence" in the
sense that, to the user, the distinction between real and simulated
physical objects displayed on a screen can be blurred . . .

Minsky is describing the Fingerpaint system, a force sensitive display
panel which could sense planar position of the point of �nger contact on the
screen and a three dimensional force vector. This extension of a touch panel
display allowed many painting e�ects to accomplished with a very simple
interface.

This sense of blurring the distinction between real and simulated physical
objects is one of the ideas driving the construction of three dimensional in-
teractive interfaces, especially those using the virtual reality paradigm. The
belief is that with a three dimensional representation people will be able
to use or adapt previously learned skills, so that the interface will be more
transparent and natural. This doesn't necessarily rule out fantastic environ-
ments but, as we shall see in Chapter 3, the interaction for an environment
should include a representation of the user and the interaction metaphors

1

2 CHAPTER 1. INTRODUCTION

employed within the environment and the behaviours of the objects should
be consistent and comprehensible by the user.

1.1 Virtual Environments

The core of the system is a virtual environment (VE) database, and we
shall be particularly concerned with virtual environments that have three-
dimensionality. The VE database must model three things [Ell91]:

� Content This the objects and actors of the environment. Objects have
properties, such as position and appearance. Actors are objects that
have the capacity to initiate interactions with other objects.

� Geometry This is a description of the space in which the content is posi-
tioned. It has dimensionality, metrics and extents. The dimensionality
refers to the number of terms needed to specify a position. The metrics
are rules that give an ordering of the positions to establish geodesic or
straight lines in the space. The extent is the range of values which the
positions might take.

� Dynamics Are the rules governing the interaction between the contents
of the environment. Examples include simulations of physical laws or
gesture interpretation.

The VE database is maintained and updated using the dynamical rules of
the environment and the e�ects of the interaction of one or more users with
that environment. A user is experiencing this VE in one or more sensory
modalities, through display devices that are showing a rendered view of the
environment. This rendering depicts the environment and creates a sensory
impression of it with respect to some model of the participant within that
environment. This model of self is derived from sensors on the participant's
body that report some aspects of the state of the participant, for example
the position of limbs or a gesture mediated by a desktop input device such
as a mouse.

Together these components form a virtual environment generator, the
structure of which is shown in Figure 1.1.

1.2 Interaction with Virtual Environments

The participant's actions are mediated through a body model into actions
within the virtual environment. At a basic level this model provides two

1.2. INTERACTION WITH VIRTUAL ENVIRONMENTS 3

environment
virtual

sensors

self
events

action stimuli

signals

displays

Figure 1.1: Components of a virtual environment generator

elements a viewpoint and a cursor. The viewpoint is the point at which the
participant is considered to be within the VE and provides a locale from
which the rendering of sensory information can take place. The cursor is a
simple extension of the two dimensional cursor to three dimensions. It is an
e�ector within the VE and it used to interact with the content.

Interaction with a three dimensional environment then involves a combi-
nation of the following tasks [SD91]:

1. Navigation - the user should be able to navigate about the VE by
controlling the viewpoint.

2. Global selection - the user should be able to select any object in the
VE.

3. Rigid body transformation - this includes translation and rotation of
an object, and any other transformation which changes the object's
position in space, but leaves its other properties unchanged.

4. Local selection - the user should be able to select part of an object which
can then be used to deform the object but not its overall position in
space.

5. Deformations - these transformations applied to an object cause it to
deform either uniformly (for example by scaling) or non-uniformly, by
twisting, tapering or bending. This actually a�ects the properties of the

4 CHAPTER 1. INTRODUCTION

environment, whereas rigid body transformation just alters the position
of an object.

How the user performs these tasks depends on two main criteria, the
input devices that sense the user, which range from desktop mice to full
body posture sensing suits, and the interaction metaphor that is employed.
The interaction metaphor will obviously depend upon the devices used simply
because some devices will only sense a small number of parts of the user's
body with few degrees of freedom, fewer possibly than the number required
to specify navigation or object manipulation without extra interaction modes
or limitation in the task.

In this thesis we will distinguish between immersive virtual environments
(IVEs) and non-immersive virtual environments (NIVEs). The di�erence
between these is a question of both interaction style and the representation
of self within the environment.

The rendering of an IVE is slaved to the body of the participant, so that
the rendered displays match as closely as possible the changes that would
be expected in a real environment when the same motions were made. In
particular the visual viewpoint is slaved to the head of the participant, so the
graphical display is continuously updated. The viewpoint from which a NIVE
is rendered does not match the participant's body but is controlled indirectly
through input devices. Similarly a cursor or representation of the body of
the participant will be slaved to the sensor devices in an IVE system, but
controlled indirectly by some appropriate interaction metaphor in an NIVE
system. Also, in an IVE system, if both the hand and head are tracked then
they will be modelled inside the VE in the correct relative positions so that
the proprioceptive sense of where the head and hand are matches the display.

1.3 Scope

This thesis is concerned with the design, implementation and evaluation of
an immersive virtual environment, within which it is possible to describe
interactions of the participant and behaviours of the component objects of
the environment.

The basic requirements for such a system are developed from considera-
tion of interactions with IVE and NIVE systems. These generate technical
requirements and also illustrate the scope of interaction techniques that must
be covered. The study of a NIVE system demonstrates how the device used
has an a�ect on the interaction techniques used. The IVE study demonstrates
how the semantics of the virtual environment dictate interaction metaphors

1.4. CONTRIBUTIONS 5

and how, to some extent, the use of a virtual body makes the interaction
device dependent.

From consideration of current programming systems for virtual environ-
ments and current work in the �eld of visual programming, a design of a
programming system that integrates the programming and display environ-
ments is produced. This programming system, the Virtual Environment
Dialogue Architecture (VEDA) system is designed as an immersive applica-
tion in order to exploit the advantages an IVE gives over a NIVE for three
dimensional structure comprehension and task performance.

The prototype implementation demonstrates the advantages of integrat-
ing the VE with its behavioural description in a data
ow model, over more
traditional programming or scripting for virtual environments, particularly
in that the participant doesn't have to leave the VE in order to make changes.

1.4 Contributions

The main contribution of this thesis is the design, implementation and evalu-
ation of the VEDA system. This allows the construction and modi�cation of
interaction techniques and object behaviours from within the VE. It provides
a meta-view of an operating VE in order to allow `expert' users to manipu-
late a structure representing the de�nition of the interactions. Therefore this
thesis covers:

� Reviews of the relevant literature on gestural interaction, visual pro-
gramming and VE systems.

� A case study of interaction with a NIVE system focusing on a input
device called the Desktop Bat.

� A case study of interaction with an IVE system using a Virtual Tread-
mill metaphor.

� Discussion of the e�ects interaction has on immersion and presence
within a VE and VEDA's role within a framework for supporting the
sense of presence.

� Design of VEDA with reference to current VE description languages.

� Evaluation of VEDA.

6 CHAPTER 1. INTRODUCTION

1.5 Structure

This thesis is organized in the following chapters:
Chapter 2 introduces the devices and metaphors used to interact with

NIVEs. Using a device called the Desktop Bat as an example it highlights
some of the problems inherent in designing natural metaphors for interaction
and the limitations of desktop interaction.

Chapter 3 describes metaphors for interaction with immersive virtual en-
vironments. It discusses what presence is, and ways of measuring it, and then
describes experiments to evaluate some aspects of virtual environment de-
sign that a�ect presence. It then describes in detail the design of the Virtual
Treadmill Metaphor and it's ease of use and e�ect on presence. The chapter
concludes by discussing some extensions to the virtual treadmill metaphor
and a more general model of presence.

Chapter 4 discusses virtual environment description, both in terms of a
model of the virtual environment's geometry and object properties and in
terms of the speci�cation of object behaviour and the participants interac-
tions with the environment. It also reviews work in visual programming that
will be relevant for the design of the programming system that is the main
focus of the thesis.

Chapter 5 describes the design of the virtual environment programming
system and justi�es its being presented immersively. It describes the range
of services provided by such a system with reference to current programming
systems for virtual environments, and how these are integrated into a data

ow model. The implementation of the system is discussed and the design
decisions taken when presenting the tools to manipulate the data
ow model
while within the environment.

Chapter 6 provides a three-fold evaluation of the system. Firstly it eval-
uates whether the system presented solves the problems that Chapters 2 and
3 raised concerning the design and customization of interaction metaphors.
Secondly it presents the design and construction of an application with this
system to highlight the capabilities it a�ords. Thirdly a user case study shows
how, for na��ve users, this system simpli�es the construction of applications
from scratch and their modi�cation.

Chapter 7 concludes and indicates how the capabilities of VEDA can be
expanded to cover, for example, distributed, multi-user applications.

Chapter 2

Desktop Interaction

This chapter investigates techniques for interacting with a desktop or non-
immersive virtual environment (NIVE). The investigation demonstrates how
the input device can a�ect the range of possible interaction metaphors that
can be used. The research described in this chapter thus leads to the con-
clusion that VEDA should not impose an interaction style or policy on the
virtual environment (VE) designer.

The chapter reviews material relating to interaction devices and metaphors,
and discusses in detail the design and use of a device called the Desktop
Bat for interaction with NIVEs [SS95]. An experiment compares several
metaphors for both navigation and object manipulation with the Desktop
Bat in three di�erent scenarios and gives some conclusions about the best
metaphor for each task. Not only are these basic metaphors di�erent but
it is shown that picking and placing of objects are best accomplished with
di�erent metaphors, and thus there is no one interaction metaphor that is
suitable for all tasks. This leads to a discussion of a general limitation of
NIVEs interaction techniques in that they are quite tightly tied to a partic-
ular device. Later in Chapter 3 we shall see that for an IVE the interaction
techniques are largely device independent.

In this chapter Section 2.1 reviews desktop interaction, the devices that
are used and techniques for navigation and object manipulation. Section 2.2
describes the construction of the Desktop Bat and the metaphors for interac-
tion selected for investigation. Section 2.3 describes the design and Section
2.4 the results of an experiment to test these interactions metaphors. Con-
clusions about the Desktop Bat are given in Section 2.5 and �nally Section
2.6 describes some limitations of the Desktop Bat and desk bound interaction
in general.

7

8 CHAPTER 2. DESKTOP INTERACTION

1 10 100 Inf 1 10 100 Inf 1 10 100 Inf 1 10 100 Inf 1 10 100 Inf1 10 100 Inf

Measure Measure Measure Measure Measure Measure

dF dT

P

Linear Rotary

R

X Y Z rX rY rZ

3
Light Pen

Tablet VPL Glove Rotary Pot

dP dR

Polhemus Cube

TrackballMouse

SpaceBall

Pressure Pad
TF

310

Figure 2.1: Some input devices plotted using the taxonomy of Mackinlay et
al.

2.1 Non-Immersive Interaction

Many applications now demand interaction with 3D data-sets and the com-
monest display system is still the desktop workstation. Interaction with
desktop display systems is also usually based on mice because of their ubiq-
uitous nature and many methods have been developed that use the mouse to
perform navigation and object manipulation within the virtual environments.

The task of specifying an object or viewpoint position has six degrees of
freedom, and so any device that senses fewer degrees will have to be used
with a metaphor that compensates for the lack of dimensionality. However
for NIVEs we shall see that having a 6 degree of freedom device on a desktop
system may not be ideal and that devices with fewer degrees of freedom may
be more suitable.

A comprehensive review of desktop interaction devices is beyond the scope
of this chapter, the reader is referred to the taxonomies of Buxton, Foley
and Mackinlay et al. [FWC84, BM86, MCR90]. Using the taxonomy of
Mackinlay et al. and examples from Buxton, Foley and Mackinlayet al. a
few demonstrative devices have been illustrated in Figure 2.1.

The taxonomy breaks devices down into individual components that they
sense, classi�es these components and then composes them back into com-

2.1. NON-IMMERSIVE INTERACTION 9

plete description of the device. Each circle on the diagram represents a
transducer of a physical property. The classi�cation is

� Linear/Rotary

� Position/Force

� Relative/Absolute

� Direction

� Sensitivity

Thus a simple button is a linear sensor, that measures relative position
in the Z direction1 at a sensitivity of one, that is it senses a discrete value.

Two types of composition are used in this �gure 2 Merge composition and
Layout Composition. Merge composition of two devices creates a single device
that is considered to generate output in the merged domain of both original
devices simultaneously. Layout composition of several devices generates a
single device that can sense the separate properties of each device separately.
A button panel is so composed since each button is independently sensed
and can be operated individually.

In Figure 2.1 merge composition is indicated by a solid line, and layout
composition by a dotted line. A tablet or light pen is thus a merge of two
absolute position sensing devices, one in the X direction, one in the Y direc-
tion. A mouse is similar, but it senses relative position, since it can be picked
up and moved without the planar position being registered, and is usually
layout composed with a number of buttons.

Several other popular devices are plotted, though there are probably sev-
eral variations for most of the devices, particularly where there is a possibility
of adding buttons.

The Polhemus FastrakR [Pol] and SpaceballR 2003TM [Spa], are radically
di�erent devices though each senses the same number of degrees of freedom.
The Polhemus FastrakR is a magnetic tracking device that consists of a base
transmitter that generates a switching magnetic �eld which induces current
in a receiver device from which the relative positions of the receiver and
transmitter can be deduced. The Spaceball senses force and torque applied
to a ball �xed to a stationary base. The Spaceball's advantage over the

1For the purposes of this exposition, a body centred axis system is used, X being to
one's right, Y away and Z up.

2Mackinlay et al.'s taxonomy also describes a third composition, Connection composi-

tion where the output of one device is piped into the input of a second device which is
often a virtual device such as a virtual slider which then generates a further output value.

10 CHAPTER 2. DESKTOP INTERACTION

Polhemus Fastrak or any free space tracking device is that it rests on the
desk and doesn't need to be held in the air. The following section describes
general technique to alleviate this problem.

Also shown in the diagram is the VPL dataglove [Zim85, ZL87], which
has been used in desktop systems though it is more usually associated with
IVE systems. It senses the angle of bend for the two proximal joints of each
digit, and has an option for sensing the abduction of the thumb and �rst and
middle �ngers. Overall this makes it a 13 degree of freedom sensing device.

2.1.1 Object Positioning Techniques

As mentioned, the task of positioning an object has six degrees of freedom
with three for the location and three for the orientation.

With two degree of freedomdevices being so widespread, many approaches
have used mice and joysticks to control objects either directly using mode
switches to enable translations and rotations in di�erent directions, or through
the use of virtual devices. Nielson and Olsen take the 2D locator movement
and map this on to motion along the virtual world coordinate axis which is
closest to the direction of movement in the current 2D projection [NO86].
Thus the plane of motion of the 2D locator is separated into six regions which
correspond to motion in the positive and negative directions along the coor-
dinate system axes. This allows placement of a 3D cursor and then rotations
can be speci�ed in terms of this and other 3D points.

Chen et al. give four metaphors for the direct control of the rotation of
an object [CMS88]. The most e�cient metaphor is that of a virtual sphere
where the object is imagined to be contained within a glass sphere. Up,
down, left and right motions of the 2D control device roll the sphere in the
appropriate direction and rotation about the remaining axis occurs when the
user moves the device along a circular path. Specifying 3D points manually
is time consuming and di�cult to perform accurately so Bier combats this
by allowing the cursor to be attached to object vertices, lines or faces. This
allows very accurate positioning and most translations and rotations can be
described relative to objects that already exist [Bie86, Bie90].

With the development of six degrees of freedom position sensors [MAB92],
a more direct metaphor of using hand location and orientation for object
location and orientation becomes available. However it is not obvious that
such a technique is ideal for long periods of interaction with a NIVE, with
their limitations of accuracy and tendency to be tiring to use [BMB86, WJ88,
War90]. Badler et al. found that using the absolute position of the hand as
the cursor position could become tiring for the user [BMB86]. They overcame
this by having a button in the user's free hand that would engage the device

2.1. NON-IMMERSIVE INTERACTION 11

in a relative mode. They also found that it was extremely di�cult to keep the
cursor stationary or to move it in just one dimension. Ware and Jessome also
considered the problem of object placement with a polhemus device and they
found it to be an easy task to perform roughly [WJ88]. Their addition of a 90o

rotation of the viewing position about the vertical axis in combination with
a disablement of movements perpendicular to the viewing plane produced a
metaphor that was simple and e�ective to use. Ware goes on to compare this
mode with the all degrees of freedom mode and compare stereo-scopic with
mono-scopic displays [War90].

2.1.2 Navigation Techniques

Mackinlay et al. identify four main types of navigation within 3D scenes
[MCR90].

1. General movement. Exploratory movement around the model

2. Targeted movement. Movement with respect to speci�ed targets, such
as moving toward an item of interest.

3. Speci�ed coordinate movement. Movement to a precise position and
orientation.

4. Speci�ed trajectory movement. Movement along a position and orien-
tation trajectory.

We are concerned with the �rst type, unconstrained exploration of an
environment and this is six degree of motion task, with three degrees to
specify rotation and three degrees to specify position.

Two basic techniques exist, moving the viewpoint through the workspace
or moving the workspace around the viewpoint. Essentially the di�erence is
the choice of coordinate system in which to perform translations and rota-
tions. Ware and Osborne give three navigation metaphors that illustrate the
di�erence [WO90].

� Eyeball in hand. The movements of the input device correspond di-
rectly to movements of the eye.

� Scene in hand. The scene itself is slaved to the input device.

� Flying vehicle control. The input device provides the controls for the
vehicle such as velocity and rotation.

12 CHAPTER 2. DESKTOP INTERACTION

Ware and Osborne note that the scene in hand metaphor is a poor choice
for complex environments because the centre of rotation is �xed and this
leads to confusing translations during rotation. Choosing the centre of rota-
tion would be possible using the techniques of cursor placement as described
previously.

Once again, two degree of freedom input devices can be used for naviga-
tion, either directly or through virtual devices [RCM89, WS91]. An example
is using a mouse to point out on the display the required direction of move-
ment, and using a di�erent mode to control rotations.

The use of a 6D tracking device allows the view to be slaved to the head
position [Sut68, FMHR86, CHB+89, McK92], a technique that McKenna
indicates improves the ability to pick locations in space [McK92]. Head
tracking systems for desktop environments have been described as �sh tank
virtual reality [WAB93], since the 3D environment is limited by its' being
projected by a static screen giving a small working area.

However, because of the limited range of position trackers, the user is
often constrained to stay within a small area and thus metaphors have to be
used to navigate over longer distances [BBH+90, BHV92].

For movement over long distances velocity control can be used [Fis90,
WS91, CW92, SN93]. Velocity control allows rapid movement over large
distances, but is inaccurate when approaching an object, though this problem
can be overcome by use of a logarithmic approach technique [MCR90]. This
technique works when there is a point of interest, for more general velocity
control Chapman and Ware's predictor based visual feedback aid can help
users learn how to control the viewpoint more e�ectively [CW92].

2.2 The Desktop Bat

The Desktop Bat consists of a dome attached via three joints to a mouse base
[SD91]. The dome rotates in three directions and combined with the planar
location of the Desktop Bat this makes it a �ve degree of freedom device (see
Figure 2.2). The Desktop Bat also has �ve buttons that are placed under
the natural resting places of the �ngers and thumb.

In the taxonomy of [MCR90] described in Section 2.1, this device's posi-
tion is illustrated in Figure 2.3. However it is easy to rotate without moving
since the base is fairly weighty compared to the dome, but hard to move
without rotating since the force to push the Bat is usually applied through
the dome's universal joint, though it is possible to position the dome at an
extremity of movement which prevents it from rotating while being moved
on the plane.

2.2. THE DESKTOP BAT 13

Pitch Roll

Yaw

Y

X

Figure 2.2: Degrees of freedom of the Desktop Bat

1 10 100 Inf 1 10 100 Inf 1 10 100 Inf 1 10 100 Inf 1 10 100 Inf1 10 100 Inf

T
dT

Measure Measure Measure Measure Measure Measure

dP dR

P R

Linear Rotary
ZX Y rX rY rZ

F

dF

5

Figure 2.3: The position of the Desktop Bat in the taxonomy of Mackinlay
et al.

14 CHAPTER 2. DESKTOP INTERACTION

The conventions used in the following descriptions of the interaction
metaphors are: the world coordinate system is de�ned by the axes X,Y and
Z, where for exposition we are taking the vertical direction in the scene to be
parallel to the Z axis; the eye coordinate system is de�ned by the axes U,V
and N where the line of sight is along the N axis and up relative to the eye
is along the V axis.

2.2.1 Navigation

The Bat has �ve degrees of freedom, but the task of navigation requires 6
degrees of freedom, with 3 required to specify the location and 3 for the
orientation of the eye point. Three metaphors that allow general navigation
are:

1. Hand on Eye. In this metaphor rotations of the Bat cause rotations
of U,V and N axes. For example roll of the Bat corresponds to rotation
of the U and V axes around the N axis. Planar movement of the Bat
moves the eye point in the plane UN, see Figure 2.4.

2. Simple Camera. In this case the eye point is regarded as a video
camera. Yaw of the Bat corresponds to rotation of the camera about
the Z axis. Pitch of the Bat corresponds to the angle between the N
axis and the XV plane. As before planar movement of the Bat moves
the eye point in the UN plane, see Figure 2.5. Roll has no e�ect with
this metaphor.

3. Hand on Eye with Velocity. This is similar to the hand on eye
metaphor, except the planar displacement of the Bat is taken as velocity
in the UN plane.

These metaphors are similar to Ware and Osborne's eyeball in hand and

ying vehicle metaphors for navigation [WO90] in that they directly control
the eye point with the input device. However because of the di�erent designs
of the input devices used, the manner in which orientation is controlled is
di�erent.

2.2.2 Object Positioning

Picking and moving objects is also a 6 degrees of freedom task, though here
the situation is more complicated because the two tasks, picking and place-
ment of objects, result in di�erent demands on the metaphor used.

The Bat controls a 3D cursor and when an object is picked it becomes
�xed relative to the cursor. Hence rotation of the bat causes the object to

2.2. THE DESKTOP BAT 15

Line of sight

Bat left

Bat forward

Roll

Pitch

Yaw

World coordinates

Plane of eyepoint
 movement

Y

X

Z

N

U

V

Figure 2.4: Hand on eye metaphor

Plane of eyepoint
 movement

Bat forward

Bat left

Pitch

Yaw

Line of sight

X

Y

Z

N

V

U

Figure 2.5: Simple camera metaphor

16 CHAPTER 2. DESKTOP INTERACTION

Line of sight

Bat left

Bat forward

Roll

Pitch

Yaw

Plane of cursor
 movement

XWorld coordinates

Y

Z

P

Q

R

Figure 2.6: Relative to cursor metaphor

rotate about the cursor's centre. The cursor's coordinate system is de�ned
by the axes P,Q and R where P is the direction in which the cursor is pointing
and R is the cursor's up vector. The metaphors for moving the cursor are:

1. Relative to Cursor. Rotations of the Bat cause rotation of the PQR
system. For example roll of the Bat causes roll of the Q and R axes
about the P axis. Planar movement of the Bat causes movement of the
object in the plane PQ, see Figure 2.6.

2. Relative to world. Rotations of the Bat cause rotation of the PQR
system. However when the Bat is moved forward the PQR system
moves along the vector de�ned by the projection of the axis P into the
plane XY, see Figure 2.7.

3. Relative to Eye. In this metaphor rotating the Bat causes rotation
of the PQR system in the UVN system. For example yaw of the Bat
corresponds to rotation of the PQR system around the V axis. Planar
movement of the Bat then moves the object in the plane de�ned by U
and N, see Figure 2.8.

The Desktop Bat's buttons allow the de�nition of simple gestures to e�ect
changes in the interaction mode. The most important gesture uses a single
button that acts as a clutch. The clutch disables the Bat so that it can be used
in a relative mode, or so that the hand can be reoriented to a
at, comfortable
position. The other required gestures, each of which uses two buttons, are:
to swap between eye point and cursor control; to enable and disable object
picking; to recall the cursor to a position in front of the eye; and �nally
to enable translations of the eye or cursor in a direction orthogonal to that
usually allowed by the metaphor. For example, to move vertically instead

2.3. EXPERIMENTAL DESIGN 17

XWorld coordinates

Pitch Roll
Yaw

Bat left

Bat forward

Plane of cursor
 movement

P

QR

Y

Z

Figure 2.7: Relative to world metaphor

Eyepoint coordinates

P
Pitch

Yaw

Roll

Bat forward

Bat left

Q

R

N

V

U

N

U
V

Figure 2.8: Relative to eye metaphor

of horizontally. The gestures were each designed with a simple metaphor in
mind. For example the gesture to pick objects uses the buttons under the
thumb and �rst �nger, which corresponds to a pinching action.

There are nine possible combinations of these navigation and manipula-
tion metaphors. Their relative utility for di�erent applications is an empiri-
cal question and the next section describes an experiment designed to answer
this.

2.3 Experimental Design

Di�erent applications place di�erent emphasis on the use of the input device
for navigation, picking and placement of objects. Accordingly three scenarios
were designed each with di�erent primary tasks for the user to perform:

18 CHAPTER 2. DESKTOP INTERACTION

Figure 2.9: Find experimental environment

1. Find. Involved the user searching for three objects on a plane and then
placing them on a table accurately enough to lock them into position.
This places emphasis on the ability to place objects with the Desktop
Bat. Figure 2.9 shows a user placing an object onto the table.

2. Data. This scenario consisted of a wire frame cube inside of which
there were several variously shaped and coloured polyhedra. The user
had to remove each of the eight yellow cubes from the wire frame cube,
testing the ability to pick objects. Figure 2.10 shows a user about to
pick a yellow cube.

3. Maze. This scenario consisted of three tunnels leading away from a
central room. The task was to navigate along each tunnel to a room
at the other end, and in that room to pick up the object resting on
the table and to bring it back to the central room. This scenario was
primarily to judge navigation ability. Figure 2.11 shows a user exiting
a tunnel into the central room.

To evaluate the metaphors several measurements were taken automat-
ically during the experiments. The e�ciency of the navigation metaphor
is indicated by the Eye Time, the time spent manipulating the eye; Eye

2.3. EXPERIMENTAL DESIGN 19

Figure 2.10: Data experimental environment

Figure 2.11: Maze experimental environment

20 CHAPTER 2. DESKTOP INTERACTION

Changes, the number of times the clutch was pressed when in eye mode; and
Eye Adjust Time, the time spent using the clutch whilst in navigation mode.
The overall e�ciency of the cursor metaphor is shown by Cursor Time, the
time spent manipulating the cursor; Cursor Changes, the number of times
the clutch was pressed when in cursor mode; and Cursor Adjust Time, the
time spent with the clutch depressed whilst in cursor mode. The times spent
picking and placing objects were also of interest, and these are recorded as
Hold time and Pick time. The number of times each gesture was used and
the length of time spent using the mode which that gesture enabled were also
recorded to see if the metaphors had an e�ect on them. These are: Number
of Recalls, the number of times the cursor was recalled in front of the eye;
Cursor-Eye Mode Swaps, the number of mode changes between navigation
and cursor control; Cursor Vertical Move Time, the time spent moving the
cursor vertically; and Eye Vertical Move Time, the time spent moving the
eye vertically. Finally Total Time taken to complete the task was recorded.

The standard analysis of variance model for each of these variables was
assumed:

yijkl = �+ �i + �j +
k + �ij + �ijkl

Where yijkl is an instance of one of the dependent variables, �i the e�ect
of being in the ith eye metaphor, �j is the e�ect of being in the jth cursor
metaphor,
k is the e�ect of being in the kth scenario, �ij is an interaction
e�ect between the eye and cursor metaphors, and �ijkl = Normal(0; �2). The
index l refers to the repetition number for each combination of scenarios and
metaphors and � is the general mean.

A Latin Square distribution of metaphors and scenes was devised. Forty-
�ve people took part in the experiment, allowing �ve repetitions of each
scenario/metaphor combination. The subjects were recruited from amongst
the students and sta� of Queen Mary and West�eld College's Computer
Science Department and Computer Services Centre. All had experience using
a mouse-based computer interface. The system was implemented on a Silicon
Graphics IRIS Indigo Elan using the GL graphics library.

The hypotheses of the experiment were as follows:

1. The velocity control metaphor for the eye would be best in terms of
time taken to complete navigation tasks.

2. The relative to cursor metaphor would be best for picking up objects.

3. The relative to eye and relative to world metaphors would be superior
to the relative to cursor metaphor for placing objects.

2.4. RESULTS 21

Dependent Variables
Eyepoint Time Eye Adjust Time Hold Time

Eye Metaphor
Hand On Eye 361:5 � 196:4 74:6 � 67:8 122:0 � 62:2
Simple Camera 360:3 � 196:3 73:5 � 53:7 184:9 � 148:8
Hand on Eye with Velocity 344:6 � 218:9 36:0 � 35:3 147:0 � 127:9

Table 2.1: Mean and standard deviations in seconds of dependent variables
for each eye point metaphor

4. Overall the relative to eye metaphor would be best for the general task
of object manipulation.

2.4 Results

In the following analysis of the results in the �rst instance an analysis of
variance (ANOVA) was performed on the data. From the results of this
analysis the signi�cant factors were determined and these factors were anal-
ysed further. The scenario will be a signi�cant factor for each dependent
variable because of the di�erent tasks performed in each case and as this is
not relevant in the comparison of the metaphors it will be ignored.

The results show that the velocity control metaphor is best for navigation
and overall that the relative to eye is best for object manipulation.

In the following description, dependent variables for which there were no
signi�cant factors, except those directly relevant to the hypothesis, are not
presented.

2.4.1 Eye Time

No factor was signi�cant in the ANOVA. In particular the eye metaphor was
not signi�cant contrary to what was expected, as shown in Table 2.1.

2.4.2 Cursor time

The mean times by cursor metaphor shows what was expected, but the dif-
ference in the means was not statistically signi�cant, see Table 2.2.

22 CHAPTER 2. DESKTOP INTERACTION

Dependent Variables
Cursor Time Eye Adjust Cursor Adjust

Cursor Metaphor Time Time
Relative to Cursor 229 � 208 78:2� 65:0 8:8� 9:9
Relative to World 238 � 136 70:2� 58:6 13:2 � 12:6
Relative to Eye 163 � 120 58:6� 31:4 6:0� 7:4

Pick Time Hold Time Cursor Vert.
Cursor Metaphor Time
Relative to Cursor 49:0 � 77:6 180 � 154 10:1 � 18:4
Relative to World 70:2 � 73:6 168 � 109 56:0 � 61:1
Relative to Eye 57:8 � 90:6 105 � 62 24:5 � 20:4

Table 2.2: Mean and standard deviations in seconds of dependent variables
for each cursor metaphor

2.4.3 Eye adjust time

In this case both independent factors and the interaction e�ect were signif-
icant at the 1% level in the ANOVA. The mean times for each eye point
metaphor, shown in Table 2.1, suggest that the subjects spent less time ad-
justing the eye when using the velocity metaphor. The mean times for each
cursor metaphor, shown in Table 2.2, are interesting as they indicate that
the subjects spent signi�cantly less time adjusting the eye if they had the
relative to eye cursor metaphor. The reason for this may be that with the
relative to eye metaphor the subjects did not need to move the eye point
to a speci�c position. For picking objects it was advantageous to be level
with the object in the relative to world metaphor. For placing objects it was
advantageous to be above the placement area and looking almost directly
down at it. With the relative to eye metaphor there is little advantage in
such accurate placing of the eye.

The signi�cance of the interaction e�ect is harder to understand. To solve
the linear model most components in the interaction e�ect were aliased to
zero. However the resulting model tells us that when using the simple camera
metaphor for the eye, the best accompanying cursor metaphor is the relative
to cursor with the other two cursor metaphors having little to distinguish
between them.

2.4. RESULTS 23

2.4.4 Cursor adjust time

Cursor metaphor was signi�cant in the ANOVA at the 10% level. The mean
times for each object metaphor, shown in Table 2.2, suggest that the relative
to world metaphor requires most use of the clutch and the relative to eye
requires least.

2.4.5 Eye changes

Both independent factors and the interaction e�ect were signi�cant in the
ANOVA. The analysis of times provides the same relationships between the
metaphors as those for eye adjust time as would be expected, the number
of times the clutch is used and the actual amount of time spent using it are
directly related.

2.4.6 Pick time

No factor was signi�cant in the ANOVA. However looking at the means for
each cursor metaphor, shown in Table 2.2, indicates what was expected.

2.4.7 Hold time

Both independent factors and the interaction e�ect were signi�cant in the
ANOVA. Cursor metaphor was signi�cant at the 1% level, eye metaphor
at 5% level and interaction e�ect at the 10%. The results show what was
expected for the cursor metaphor, as shown in Table 2.2. The mean times for
each eye metaphor, (Table 2.1), indicate that the hand on eye and velocity
metaphors give an advantage over the simple camera metaphor.

The model also suggests that if using the simple camera metaphor for the
eye, the best accompanying cursor metaphor is the relative to world, followed
by relative to eye, then relative to cursor.

2.4.8 Cursor vertical move time

Interaction e�ect and cursor metaphor were both signi�cant at the 1% level
in the ANOVA. The mean times for each cursor metaphor, see Table 2.2,
show that the relative to world metaphor required the vertical mode to be
used frequently because it is necessary in order to change the horizontal plane
in which the cursor moves. The relative to eye metaphor also requires the
vertical mode to pick or place an object not in the plane of the eye.

24 CHAPTER 2. DESKTOP INTERACTION

The model also suggests that if using the simple camera metaphor for the
eye, the best accompanying cursor metaphor is the relative to world, followed
by relative to cursor, then relative to eye.

2.4.9 Eye vertical move time

Scenario and interaction e�ect were signi�cant in ANOVA, interaction e�ect
at the 1% level. The results for the interaction e�ect show that when using
the simple camera metaphor for the eye then the best cursor metaphor to
combine it with is the relative to world, then the relative to cursor, and then
the relative to eye.

2.5 Conclusions about the Desktop Bat

The results are consistent with the hypotheses, but for reasons not always
anticipated.

The velocity control metaphor is best for navigation, though this is not
due to the actual time spent moving, but the lesser amount of time spent
using the clutch with this metaphor. This is understandable since to navigate
long distances with the simple camera or hand on eye metaphor requires the
clutch to be used whenever the bat has been pushed as far as the arm will
reach. When using the velocity control metaphor the clutch was only used
when turning a corner around which the subjects could not see, in which
case they would stop, turn and then speed up again. The velocity control
metaphor also has an advantageous e�ect on the time spent holding an object,
though the reason for this has not been determined.

For the object manipulation metaphor the results have con�rmed that
di�erent metaphors are best for the two tasks of picking and placing. The
relative to cursor metaphor was marginally better for picking objects when
looking at the mean times for object placement, and the relative to eye was
best for placing objects. The relative to world metaphor did not give as
much of an advantage for placing objects as originally thought. Overall
the relative to eye metaphor would be the best choice due to the greater
di�culty of placing objects compared to picking them. This is con�rmed by
the analysis of the cursor adjust times and cursor changes that would seem to
suggest that orienting the cursor is easier with the relative to eye metaphor.
The cursor vertical move time indicates that the relative to eye metaphor
requires a lot of vertical movement, but this time is a part of the total time
spent using the cursor and so does not suggest a poorer overall performance
for this metaphor.

2.6. LIMITATIONS OF THE DESKTOP BAT 25

More succinctly, the velocity control metaphor is best for navigation and
overall the relative to eye is best for object manipulation.

2.6 Limitations of the Desktop Bat

The Desktop Bat has advantages over some other devices in that it rests on
the desktop and does not lead to fatigue from having to hold out a 3D position
sensor. It also can be used as a normal mouse and my be especially useful
for applications that require switching between 2D and 3D environments.
The lack of a sixth degree of freedom is not a problem since the metaphors
discussed earlier allow general movement in 3D environments. In fact object
placement may be easier if not all the degrees of freedom of a 6 degrees of
freedom device are enabled simultaneously [War90].

However, there are some drawbacks especially when compared to the
possibilities provided by IVEs. Firstly mode switching and overloading are
inevitable since one device is being used for multiple tasks. Secondly inter-
actions should ideally be customized for user preference. And �nally, none of
the interaction metaphors are naturalistic since they require some cognitive
mapping from physical action to result within the environment.

The use of one device for several tasks, and the multiplicity of interaction
metaphors for di�erent tasks means that the interface will have to include
switches to determine which mode the device will operate in, thus overloading
the device by giving it more than one function in the environment. As
we have seen there are at least two distinct modes, navigation and object
manipulation, but further sub-modes might be useful. With suitable choice of
metaphor we shall see in Chapter 3 that this mode-switching and overloading
are avoidable within an IVE.

A limitation not speci�c to the Desktop Bat is one resulting from the
fact that the environment is displayed on a desktop machine without a head-
tracked display. This is that some spatial tasks are better performed within
an immersive system rather than when watching \Through the Window"
[SAU94].

A further conclusion drawn from the experiment is that interactions
should be customized for the user. Ideally the option to use any of the
metaphors should be left open to the experienced user, but even then further
customization may be desired. One instance where this would have been
useful during the experiment was in selecting the manner in which the clutch
was used. The metaphors speci�ed that the clutch disabled rotations and
translations, but some participants expected the opposite. The participants
who expected the clutch to enable rotations and translations used the clutch

26 CHAPTER 2. DESKTOP INTERACTION

in the same manner as a ratchet, and started moving in the opposite direction
to that which they desired. The alteration to the system required was subtle
and trivial to perform, though it was not anticipated prior to the experiment.

Finally when using the Desktop Bat the user has to learn news skills
to perform tasks and from observation participants initially had to think in
terms of how to move the cursor in the direction they want rather than using
a skill they know how to use.

Overall, though this chapter has focused on a single Desktop Bat, we
have seen that there are inherent limitations to exploring a 3D environment
using a 2D interface. These limitation arise from the use of indirect and non-
naturalistic metaphors for interaction and the poor sense of position that
arise from NIVEs. Chapter 3 will show how appropriate metaphors for IVEs
allow the user to use skills and techniques they already possess in order to
accomplish similar tasks.

Chapter 3

Immersive Interaction

This chapter focuses on immersive virtual environment systems and the in-
teraction metaphors and styles that they a�ord. The chapter shows how
the semantics of the IVE can dictate appropriate metaphors for interaction
and again it leads to the requirement that VEDA should not constrain the
interaction techniques that can be described.

The basic aim of the IVE systems we will describe is to generate and
sustain a sense of presence within the virtual environment they display. Thus
we will discuss the sense of presence, how to measure it and the e�ects of
various interaction metaphors on the sense of presence. The main work in this
chapter is the investigation of a technique for navigating within IVEs called
the \Virtual Treadmill". This is an example of a gesture based metaphor
and the comparison between it and standard navigation metaphors for IVEs
will demonstrate how using a model of the participant's body can make
the interaction techniques more independent of the input devices. This body
model thus relieves the problem of interaction techniques being tightly bound
to input devices as was the case with NIVE systems as described in Chapter
2.

Section 3.1 outlines the basic elements, hardware and software, that are
needed in order to generate an IVE. Section 3.2 describes the scope of gesture
based interaction and a few systems that support gestures. Section 3.3 de�nes
presence and lists some exogenous factors, that is aspects of the presentation
and composition of the IVE, purported to a�ect it. These exogenous factors
are examined further in Section 3.4 and this will lead to investigation of
endogenous factors in Section 3.5. The problem of navigation in IVEs and
it's a�ect on presence is discussed in Section 3.6. A speci�c interaction
metaphor is introduced in Section 3.7 and examined with respect to it's
a�ect on presence and performance in Section 3.8. Section 3.9 describes
some extensions to the Virtual Treadmill metaphor and describes a general

27

28 CHAPTER 3. IMMERSIVE INTERACTION

approach to metaphor construction. Finally Section 3.10 draws together
presence and interaction with a new model of presence and Section 3.11
concludes by indicating some requirements for the design of IVEs.

3.1 Immersive Virtual Environment Systems

There have been many attempts at de�ning what constitutes an IVE system.
A common theme is that IVE systems are striving towards becoming what
Ivan Sutherland called the `Ultimate Display'[Sut65]:

a system that can present information to all the user's senses at
a resolution equal to or greater than that he or she can discern
so there is no way to tell that the arti�cial world is not real.

Such a system would be the ultimate direct manipulation system (x1), in
that if the arti�cial world is convincing it must be possible to act within that
environment as if one were actually there.

A system that generates an IVEs provides the participant with a sense
of presence, that is it provides an illusion that the participant is physically
present in a place other than that where their real body is. This sense is what
both Minsky [Min84] and Sheridan [She92a, She92b] termed telepresence.

Many di�erent media forms have been claimed to give this belief to a cer-
tain extent. For example, �lms are often classi�ed as good or bad depending
on whether or not the viewers felt `there' and had observable reactions to the
on screen action. On this criterion we should include such media as video,
computer games, photography, compact discs and so on in our de�nition of
IVE systems. Warren Robinett [Rob92] proposes a taxonomy that covers the
whole breadth of technologically mediated experience.

However there are subtle distinctions to be made between presence and
psychological states such as awareness, attention and focus. In general a per-
son who is present in an environment describes that environment as some-
where they have visited rather than somewhere they have seen. A fuller
explanation of presence, it's de�nition, measurement and utility in evaluat-
ing interaction metaphors for virtual environments is given in Section 3.3. As
an example though, one participant who experienced a virtual environment
[SU92] made the following comment:

My feeling when carrying on with the experiment was that of
being in another part of the building where the experiment was
held. . .

3.1. IMMERSIVE VIRTUAL ENVIRONMENT SYSTEMS 29

One of the �rst systems whose purpose was to provide the participant with
a sense of presence was created by Morton Heilig with his 1962 `Sensorama
Simulator' [Rhe91, pages 49-53]. This was designed as an arcade machine
that would provide the sensation of riding a motorcycle through Brooklyn. It
provided an experience where the participant saw a 3D movie of a motorcycle
ride complete with engine vibrations, wind and smell e�ects.

The major di�erence betweenMorton Heilig's system and current systems
is in the fact that the Sensorama machine was non-interactive whereas today
the emphasis is on systems that provide the participant with control of the
experience and the ability to control it.

Myron Krueger's various `Arti�cial Reality' systems do provide the high
degree of interaction that is missing in Morton Heilig's Sensorama[Kru90,
Kru91]. Krueger's fundamental concept is that of an environment that re-
sponds to the participant's movements. In his system VIDEOPLACE the
participant enters a darkened room and is confronted with a wall-sized dis-
play whose image is their own silhouette. A hidden computer can add graphic
objects to the display and the participant can interact with these objects in
a multitude of ways. Many scenarios have been created, one of the most
amusing involves a CRITTER, a small graphic creature which with the cor-
rect coaxing will jump on to an outstretched hand, dangle from a �nger or
perform a jig on the participant's head. Whilst this scenario is for entertain-
ment there are serious applications for this system, one of which is remote
conferencing as the images of several environments can be combined to al-
low the participants in their individual environments to interact in the same
arti�cial space.

VIDEOPLACE also di�ers from most current systems in the fact that the
participant sees a third person view of himself within the computer generated
environment. An immersive system would usually display a �rst person view
which was slaved to the participant's movements.

A virtual environment generator, or virtual reality system as has been
popularized by the media over the past few years has come to mean a com-
puter system such as described in [FMHR86, Fis90, SIG89, SIG90, Bri93]
that has several key components:

� A database that describes the VE. As detailed in Section 1.1, this
describes the content, geometry and dynamics of the VE, and includes
a special object that is the representation of the participant, the \self"
within the VE.

� A head mounted display (HMD) that provides a visual representation
of the VE, rendered from the viewpoint the participant within the

30 CHAPTER 3. IMMERSIVE INTERACTION

VE. A HMD usually uses twin displays, one for each eye, and the
images for each are produced using perspective projections with slightly
di�erent centres of projection for each eye in order to give stereo cues
[Sut68, CHB+89, RR92, Pat92].

� Audio output to complement the visual images. This aspect receives
less attention than the visuals of an environment, though techniques to
create and locate sounds in 3D space do exist and are very convincing
[Wen92, DRP+92].

� A system that can track the participant's body [MAB92]. This is usu-
ally restricted to tracking the hand and head, in order to provide a
viewpoint from which to render the VE, and the second to an e�ector
within the world with which to interact with objects.

� A gesture input device that the participant holds in or wears on his
hand. This can be as simple as buttons built into the hand held tracking
device, or a glove that tracks hand posture.

However an IVE system is more than just a description of a technology,
the VE itself must appear to be consistent and provide a degree of interactiv-
ity. One categorization of VEs that emphasizes the nature of the environment
rather than the technology is the Autonomy, Interaction and Presence (AIP)
cube proposed by David Zeltzer [Zel92], see Figure 3.1. An IVE system needs
to be interactive, that is the participant is able to change events and not just
be a spectator as in Sensorama. An ideal IVE system should provide a high
degree of presence so that the participant would feel that they were in the
world created by the computer. It would have to be autonomous, that is the
virtual world would not be a passive structure, but should have the ability
to react to a wide variety of stimuli.

Section 3.1.1 will discuss the basic devices that the systems will use and
Section 3.1.2 will discuss metaphors for interaction within virtual environ-
ments.

3.1.1 Immersive Virtual Environment Devices

A complete review of IVE devices is beyond the scope of this thesis, the
reader is referred the books of Burdea and Coi�et, Bar�eld and Furness, and
Kalawsky, as excellent starting points for investigation[Kal93a, BC94, BF95].
This section will cover a number of example technologies to illustrate the basis
from which we have to work when constructing interaction techniques.

3.1. IMMERSIVE VIRTUAL ENVIRONMENT SYSTEMS 31

Autonomy

Task Level Graphical

Interaction

Presence

Conventional Animation
Systems ca. 1990

Simulation

"Virtual Reality"

Digital Shakespeare

Figure 3.1: Zeltzer's AIP cube with example systems

An example display device, the one used in the work described in the
rest of this thesis, is the Virtual Research Flight Helmet shown in Figure 3.2.
It uses twin back lit liquid crystal displays, both having a 360x240 colour
resolution. The �eld of view is 100o degrees in the horizontal and 60o degrees
in the vertical. The device uses a NTSC signal and weighs about 2kg.

Although a relatively old device, it is typical of the resolution of most
of the head mounted displays in use today. Head tracking is provided by a
Polhemus Fastrak system (x2.1).

In an IVE system the participant's hand is usually tracked by a second
device. The Division 3D mouse, see Figure 3.3, is a typical device. The
tracker is embedded within a pistol grip that has �ve buttons, three on the
top to be used by the thumb, and two to be used by the �rst and second
�ngers.

Although a glove device was not used in the work in this thesis, they
are quite commonly used and have been one of the icons of virtual reality
in the media [Fol87]. The VPL Dataglove [ZL87, ZL91] (x2.1), works by
measuring the leakage of light from optical �bres stretched over the �nger
joints. From the loss of light a crude measure of angle can be obtained, though
the Dataglove was notorious having to be recalibrated for each participant
and each session [BC94, pages 34-35].

3.1.2 Interaction Techniques

Interaction within an IVE di�ers from interaction with a NIVE in a number
of important ways:

32 CHAPTER 3. IMMERSIVE INTERACTION

Figure 3.2: Virtual Research Flight Helmet

Figure 3.3: Division 3D Mouse

3.1. IMMERSIVE VIRTUAL ENVIRONMENT SYSTEMS 33

1. The participant is immersed with the virtual environment and to some
extent is unaware of the physical environment around them, in partic-
ular the display and sensing devices.

2. The whole body is involved with interacting with the virtual environ-
ment and in particular the participant is usually standing.

3. The participant can move freely and a number of these movement are
captured without being constrained by the number of degrees of free-
dom of the interaction devices.

The interaction devices thus return a partial record of the state of the
participant's body and the participant's representation within the environ-
ment is usually consistent with this record, rather than being an abstract
viewpoint and detached cursor.

These di�erences provide an environment within which it is supposed that
certain tasks can be performed more easily than on a desktop system. One
example is architectural walkthrough where experiencing the virtual environ-
ment from a realistic perspective gives a sense of being within that environ-
ment that is similar to being within the actual space it portrays [SAU94].

Direct manipulation is the basis of IVE systems, with most systems rep-
resenting at least one of the participant's hands inside the environment which
can be used to interact with the objects in a natural and realistic manner.

However IVE systems still require navigation techniques because, al-
though they are unlike NIVE systems in that the participant is free to move
around, there is a limitation to the distance they can physically move because
of the range of the interaction devices.

Two typical navigation metaphors are:

1. Fly in the direction the hand is pointing by making a gesture such as
pressing a 3D mouse button.

2. Fly along line of sight by making a gesture.

Flying in the direction of hand pointing is a useful metaphor as it allows
the participant to
y around an object while their gaze remains �xed upon
it. Unfortunately it can be tiring for the participant's to continually have to
point where they want to go, so
ying along the line of sight, which doesn't
allow the same
exibility in direction but does allow the participant to leave
their arm at their side, is a possible alternative. When
ying along the line of
sight the hand is free to hold objects, and to hold them so they don't obscure
the view which can be a problem with the
y in the direction of pointing
metaphor if the participant wants to
y forward but is holding a large object.

34 CHAPTER 3. IMMERSIVE INTERACTION

3.2 Gesture Based Interaction

Gesture recognition can be performed on any tracking device that senses
the position of a body part, though a greater breadth of gestures should be
possible when more tracking devices are used. With an IVE system, where
we have a direct correspondence between body position and representation
within the environment, the potential for gesture based interactions is great
since the participant can make natural gestures, such as those they make in
the real world.

The simplest type of gesture interaction is the symbol set, where the
system recognizes a number of de�ned postures of the participant. In gen-
eral though gestural interaction is much broader than symbol sets and the
following section describes a classi�cation of gestures. Detecting when the
participant is making a particular gesture is the concern of Section 3.2.2 and
Section 3.2.3 describes some systems that rely on gesture based interaction.

3.2.1 Gesture Classi�cations

The AHIG system is one of several categorizations of gestures [Wex94]:

� symbolic/modalizing

� pantomimic

� iconic/object

� deitic/Lako�

� beat/Butterworth/self-adjusters

Symbolic/modalizing These are culturally de�ned gestures such as thumbs
up and V-for-victory that are purely symbolic, that is the physical postures
and motions bear little or no relation to the gesture's meaning.

Pantomimic These gestures mime the use or action of an object. There
are many examples, though their meaning may not be immediately obvious
(consider playing a game of charades) and depends on context. An example
might be miming opening a stuck door.

Iconic The body becomes the object being described. For example a person
might describe the orbit of a satellite around the earth by making one �st
stationary and making the other one circle.

3.2. GESTURE BASED INTERACTION 35

Deitic/Lako� These gestures indicate items of interest in the environ-
ment. Pointing, nodding at or gesturing with the back of the hand are all
examples of this type of gesture.

Beat/Butterworth/Self-adjusters Beat gestures mark stress, rhythm
and pace usually of speech, though an orchestra conductor uses the same
techniques. Butterworths also serve as marks, though they indicate that the
exposition is not complete or the speaker is thinking. They do not generally
convey any information about the subject being explained. Self-adjusters are
�dget gestures that like Butterworths do not convey information about the
speakers subject but about their mental state.

All these types of gesture have their application in three dimensional sys-
tems, though by their nature some are more di�cult to recognize than others.
Many symbolic gestures such as the two mentioned are easy to recognize pro-
vided the �ngers and hand are tracked since they have a static component
(the �nger shape) that does not depend greatly on hand position (though
orientation is signi�cant for \thumbs up"). Recognizing dynamic gestures,
where the limbs move over time, is more complicated, though their expressive
power is greater.

3.2.2 Gesture Recognition Software

The problem of gesture recognition is to classify motions of the body into
events inside the virtual environment. This problem has been tackled for pen
based input systems [Lip91, Rub91, Zha93] but as Wexelblat notes [Wex94]
in an IVE system the problem is harder as we don't have events to mark out
the gesture in time (the pen-down and pen-up events).

Kendon [Ken80] postulated that gestures consist of �ve phases: prepara-
tion, pre-stroke hold, stroke, post-stroke hold and retraction. Unfortunately
gestures can run together and Kendon admits that only the stroke phrase
is necessary so there is a problem partitioning the input data into di�erent
gestures. One system that uses a form of preparation is the Charade system
[BBL93] for controlling a hypercard presentation. Gesture recognition is only
activated once the hand is pointing towards an active zone, otherwise the pre-
senter is free to leave their hands by their side. Sparell's systems [Wex94,
pages 36-37] use a three phase approach: gesture recognition is enabled as
the participant moves their arms up from their sides and �nishes as they
return them. These approaches hinder the natural expression of gesture, and
ideally gesture recognition should be continuous and freely directed.

36 CHAPTER 3. IMMERSIVE INTERACTION

Current techniques for recognizing gestures include explicit recognition,
template recognition, feature based recognition and neural net based recog-
nition [Wat93b].

Explicit Recognition In these systems for each gesture to be recognized
there is a speci�cally coded procedure that detects some feature of the ges-
ture.

Using a dataglove as input Sturman uses explicit software formulations
to detect the dedicated set of gestures for his example applications [Stu92].
For example to recognize a waving gesture the features are: hand not closed,
more than a �xed number of direction changes of the �ngers in a set period
and waving motion large enough not to be random
uctuations. Sturman
does suggest that further work should concentrate on extending the set of
features to cover a majority of useful gestures.

Template Recognition Template recognition involves matching the cur-
rent state of the raw input data to a set of ranges that correspond to gestures.
This will often involve a least distance estimate to distinguish between likely
candidates. At its' simplest level this involves matching the bend values as-
sociated with the �nger joints to a prede�ned set of bend values that model
the posture to be matched.

The VPL system described in [ZL87] used this method. It was extended
to incorporate hysteresis values to widen the required range so that once a
gesture was �rst recognized holding it would be easier for the participant.

The MR Toolkit also used a similar approach, but incorporated a gesture
editor where the range of values for each joint can be speci�ed in a window
or by demonstration [Kal93b, page 231].

Sequences of such postures can be used to recognize dynamic gestures.
Bordegoni et al. use a sequences of postures along a particular trajectory for
dynamic gestures [BH93]. Their system also provides a gesture editor that
illustrates the gesture with a 3D model of the hand and the path and poses
it makes.

Lipscomb uses templates for pen based recognition [Lip91]. The sequence
of points produced is compared against a hierarchy of templates which in-
creases with complexity from broad forms at the bottom to speci�c gestures
at the top. This reduces the work involved with comparing the raw data
with all possible templates.

Feature Based Recognition To overcome the complexity of recognizing
a gesture from many possible templates, features can be extracted from the

3.2. GESTURE BASED INTERACTION 37

raw data and these feature vectors classi�ed.
Rubine [Rub91] built a handwriting recognition system for a single point

on a plane, either a pointer, mouse or stylus. As noted before, the start
and end of the gesture are marked by the start and end of the list of points
returned by the hardware. The features extracted from the list of points
include distance between �rst and last point, initial angle and diagonal angle
of the bounding box.

Some of these features are not appropriate for continuous 3D gesture
recognition and Rubine gives a methodology for 3D, but still with the con-
straint that the start and end points must be speci�ed.

Sturman [Stu92], uses a small set features as the basis of his gesture
recognition. Typical features are path bounding volume, cumulative path
length and current linear speed.

A simpler method of choosing the features was chosen by the GLAD-IN-
ART project [Wat93b] They choose the features to be discontinuities of the
raw input, either turning points or the beginning and end of constant regions
in the individual data streams. Wexelblat [Wex94] uses a similar approach as
the �rst stage to segment the data values but the interpretation of the path
produced by the feature detector is provided by a separate context dependent
module that makes the overall system more
exible.

Neural Net Based Recognition Neural networks [HKP91] are an obvi-
ous choice for gesture recognition because training is done by giving examples
to the network and because of their ability to generalize and their resilience
to errors in the input data. Unfortunately training can take a long time
and once the network is trained it can not be modi�ed to recognize another
gesture without retraining the whole net.

The Glove-Talk system [FH93] uses �ve neural nets to recognize hand
gestures and drive a speech synthesizer. The language consists of a set of
hand-shapes with the direction indicating the word ending and stress and
speech rate determined by the duration and magnitude of the gesture.

Murakami et al. used a di�erent type of neural network for their dynamic
gesture recognition [MT91], to recognize ten symbols from Japanese sign
language. The recurrent network they used only had data for the last 3 time
steps as input but maintained context by using the values for the hidden
layer in the previous time step as input. Training for the 10 gestures then
took 4 days on a SUN/4 workstation to achieve a 96% success rate.

Recognizing gestures for an IVE system has complications due to the na-
ture of the interface devices used, see Section 3.1.1. Current tracking systems

38 CHAPTER 3. IMMERSIVE INTERACTION

have to trade o� between resolution, lag, working area and cost. That the
data is returned with some lag is not necessarily a problem in itself for the
recognition software, but since recognition techniques themselves take time
to run, the overall delay between an action being performed and its recogni-
tion can be quite signi�cant. Another problem that a�ects magnetic systems
in particular is that not only can the data be noisy, but the noise level might
depend on the distance from the trackers and the underlying non-noisy po-
sition may be distorted due to magnetic properties of other objects in the
environment. This makes simple template based recognition unreliable since
hysteresis values must be set quite high unless the participant's freedom of
movement is further constrained. Neural net techniques might be more ap-
propriate because of their resilience to noise and Section 3.7 describes the
use of such a net to recognize a speci�c gesture.

3.2.3 Gesture Based Systems

IVE systems often use a single glove-based with simple gesture recognition to
activate tools and modes of the interface. With VPL's RB2 system [BBH+90]
or the GIVEN toolkit [BHV92] a �rst �nger pointing gesture enables uncon-
strained
ight around the environment, whereas a
at hand enables
ying in
the vortex world designed by Lewis et al. [LKL91].

The range of gesture used in virtual environments is broad, though there
is a general design criteria for the sets be natural and easy to remember.
This involves making the gesture pantomimic or the use of well-known sym-
bolic gestures, such as thumbs up for con�rmation, rather than introducing
arbitrary symbolic gestures such as the
ying gestures above. This rule is
usually su�cient, given the limits of current gesture recognition algorithms,
to cover mundane actions inside a virtual world, but could easily fall down
when gestures for the magical abilities of the participant in the virtual world
are considered, such as scaling and more general data manipulation.

A particular limiting factor is that most gesture sets are based around the
participant's hand shape, with hand position and orientation only signi�cant
for certain dietic gestures where the hand indicates a selection object. This
limits the gestures that can be accommodated, and we shall see in Section 3.7
how a full body gesture provides a natural metaphor for navigation. Indeed
since the hand is the only input device in some applications their can be
a tendency to overload the hand with abilities. In a CAD based system
described by Weimer and Ganapathy [WG89], the thumb abduction gesture
had three meanings dependent on context: picking objects, enabling a clutch
for incremental transformations, and throttling where the abduction angle is
used as a scaling value.

3.3. PRESENCE 39

3.3 Presence

Presence in an IVE system would appear to di�er from the sense of absorp-
tion, engagement or suspension of disbelief that may arise from a book or
game in that after the experience many people describe the virtual environ-
ment as a place they have visited rather than an environment they have seen.
Some comments made by participants illustrate this [SU92]:

Looking back it feels more like somewhere I visited, rather than
something I saw (as in a �lm), so I suppose I must have felt I was
in the scene.

In fact the `virtual reality' world was more real than I was ex-
pecting. I had the impression I was in a real room. . .

This sense that the person has of being in an environment other than that
where their real body is similar in concept to what both Minsky [Min84] and
Sheridan [She92a, She92b] termed telepresence.

Many factors have been suggested that increase the sense of presence
[She92b, Loo92a, Loo92b, Hee92, SU92, SU93, Ste92, BH95, BSZS95]:

1. The data presented to the senses should be of high resolution.

2. The data should not be obviously from an arti�cial source. For example
the displays should be refreshed at a rate high enough so the participant
does not see
icker and the displays themselves should not be so heavy
that this becomes a source of fatigue.

3. The data presented should be consistent. For example if an object in
view makes a sound then the sound should appear to originate from
that direction.

4. The virtual body or slave robot should be similar in appearance to the
operator, so there can be an identi�cation between the participant's
limbs and those of the representation.

5. There should be a direct visual consequence of each of the participant's
movements.

6. There should be a obvious mapping between the participant's move-
ments and the movements of the virtual body or slave robot.

40 CHAPTER 3. IMMERSIVE INTERACTION

7. There should be a wide range of possible interactions that the partici-
pant can make. For example if there is a virtual table in the environ-
ment then you should be able to not just see it, but touch it and feel
its weight.

8. Other objects or participants in the environment should recognize and
acknowledge the participant in some way (such as a door opening as
the participant approaches).

These factors are all exogenous, that is they concern the presentation and
behaviour of the environment and are external to the participant's body.

The above criteria do not specify natural behaviour for any object, only
that there should be a direct relation between e�erence and a�erence. Of
course in a real world simulation experience, such as an architectural walk
through application, natural behaviour of objects should be our aim but not
at the expense of consistency. Held and Durlach [HD92] and Loomis [Loo92a]
note that the operator's sense of presence can increase over time, which could
be due to the participant's coming to understand the world's causal laws and
gaining a belief in the consistency of the environment model.

3.3.1 Measuring Presence

To determine the suitability and e�ectiveness of changes to the virtual envi-
ronment we need a working measure of presence, but as Held and Durlach,
and Sheridan note none currently exists. Methods do exist for measuring psy-
chological states such as involvement and engagement, but it is believed that
presence is a di�erent state. Suggested approaches for measuring presence
[SU92, BSZS95] include:

1. Participant's reported sense of presence. This is a complicated process
because the process of enquiring the state of the participant may change
that state.

2. Observations of the participant's behaviour. This takes observable re-
actions to certain situations as con�rmation of the participant's pres-
ence. For example shying away from looming objects or replying to a
welcoming `hello' message.

3. Performance of tasks in real and virtual environments. This assumes
that if a participant performs a task in a virtual environment as ef-
�ciently and in the same manner as they do in a real environment
then they must be present in that virtual environment. This however

3.4. EXOGENOUS FACTORS 41

would work only for naturalistic environments and is of more use in the
teleoperator �eld.

4. Discrimination between real and virtual events. This tests, for exam-
ple, the participant's ability to di�erentiate between sound cues that
originate within the virtual environment and those that originate in
the real world.

5. Incorporation of external stimuli. If the participant interprets an exter-
nal event, such as a loud noise, in the context of the virtual environment
then they must be present in that virtual environment.

All but the �rst method present immediate problems, in that taking the
measure could either break the metaphor for the environment or actually
present stimuli that might a�ect the sense of presence.

The following section investigates the relation between these measures
and will lead in Section 3.5, to our having to include considerations about
endogenous factors of the participant when using their reported sense of
presence.

3.4 Exogenous Factors

One of the factors that was suggested to increase presence was to provide the
participant with a virtual body. In an architectural walk through application
the virtual body is especially useful as it can provide useful clues to spatial
relationships between objects since it provides the world with a natural scale.

Given the limited amounted of information about the participant's pos-
ture known by the system a number of approximations have to be performed
[SU94b] in order to create the virtual body. Since the torso is not tracked ex-
plicitly, it was assumed to hang directly below the body, and only turn once
the head position has turned by 60o around the vertical axis. Similarly, since
the hand was tracked and not the elbow, the arm was assumed to extend
directly from the shoulder. And again since there would be no di�erence
in reported hand and head position for a bend from the waist posture and
crouch gesture, if the head dipped below a normal height the participant was
assumed to be crouching. This normal height was the recorded height of the
participant when they entered the environment, at which point they were
assumed to be standing erect.

42 CHAPTER 3. IMMERSIVE INTERACTION

Figure 3.4: View from far end of cluttered room

3.4.1 Experiment

In a pilot experiment, conducted to test whether the virtual body increased
the sense of presence and generate further hypotheses [SU92], the subjects
were split in to two groups, one group had a virtual body and the other had
a simple arrow representing the hand, and all went into six rooms in the
virtual environment in turn.

The �rst room was cluttered with objects and the task was to navigate
to the other end of the room. The hypothesis here was that those with the
virtual body would make fewer collisions with objects as they would be more
careful about avoiding them since they would have visual feedback if they
collided with something. See Figure 3.4.

The second room had objects that
ew towards the position of the sub-
ject's real body with the hypothesis being that those without the virtual
body would show a lesser reaction.

The third room involved the subjects building a pile of blocks during
which the virtual body would disappear for a short period. The purpose of
this was to give all the subjects a lengthy task to complete to assess whether
task involvement would lead to a higher sense of presence and also to see
whether those with a virtual body would react to its disappearance.

The fourth room was similar to the second except that the objects ap-
proached the face.

In the �fth room the body was re-oriented so they would appear to be up-
side down. The purpose of this was to see the e�ect of the disparity between
the subjects sense of orientation and the visual information presented.

The last room consisted of a chess board with a plank upon which was a

3.4. EXOGENOUS FACTORS 43

Figure 3.5: View from above down into room with plank over precipice

plank that led out over a precipice. Here we expected to observe a fear reac-
tion, with a possible di�erence between those with and without the virtual
body. See Figure 3.5.

17 participants took part in the experiment, with 9 in an experimental
group having a virtual body and 8 as a control group.

The experiment was implemented on a Division Provision 200 system,
using the DVS operating system. The display device was a Virtual Research
Flight Helmettm with a resolution of 360x240 colour triads and �eld of view
of 75 degrees along horizontal and 40 along the vertical. Rendering was per-
formed by Intel i860 microprocessors with one per eye generating a RGB-170
video signal which is then converted to NTSC to drive the display. Tracking
was provided by Polhemus Isotracks updating at 30hZ, one on the helmet
and another inside a Division 3D Mouse.

3.4.2 Results

The two measures of presence taken were observed reaction to the approach-
ing objects and plank, and reported sense of presence as gathered by a post-
experiment questionnaire. With this group of people these did not correlate
well - some people who had adverse reaction to being on the plank did not
rate themselves as being present. It could be that the sense of presence varied
over time and the subjects were reporting their overall impression.

The main interest was the in
uence of the virtual body on the sense
of presence. From the direct results it was seen that those with the arrow
representation reported a higher sense of presence than those with the body,

44 CHAPTER 3. IMMERSIVE INTERACTION

opposing the hypothesis. This could be explained by taking into account
that those with a predisposition to travel sickness reported a higher sense
of presence and there were more of these people in the no-body group. The
analysis also showed that the non-body group contained far more people who
considered themselves able to adapt quickly to new circumstances.

By considering various other personal factors the following tentative con-
clusions were drawn:

� Those without a virtual body who mentioned display problems were
likely to report a low sense of presence. There was no di�erence between
those with a virtual body.

� In the group that had virtual body the females generally reported a
higher sense of presence than the males. The reverse was true for the
other group.

Overall the virtual body was seen to have an in
uence, but in a compli-
cated manner [SU92, SU93].

3.5 Endogenous Factors

The experience with the �rst analysis lead directly to the use of a model of
the subjects' psychology in order to fully understand the e�ects of the virtual
environment.

The approach taken was to use the unorthodox Neuro-Linguistic Pro-
gramming model [DGB+79]. This classi�es people along two axis, represen-
tation system and perceptual position. The representation system determines
whether the persons' dominate mode of thinking is visual, auditory or kinaes-
thetic. That is, do they think in terms of pictures, by internal-dialogue, or in
terms of sensations and emotions. The perceptual position is the standpoint
from which the person experiences and remembers events. This is either �rst,
second or third person. That is they remember events from either their own
perspective, that of another person or from a disembodied viewpoint.

The representation system and perceptual position of each of the subjects
was determined from the last part of the questionnaire, which asked subjects
to write about their experience, by counting the number of visual, auditory
and kinaesthetic predicates and references used. For example:

In many of the rooms I visited, I felt I was really in that world

would be classi�ed as �rst position with a kinaesthetic predicate.

3.5. ENDOGENOUS FACTORS 45

3.5.1 E�ect of the Virtual Body

The outcome of analyzing the results from the original pilot experiment using
the NLP technique was much more productive, see Figures 3.6(a,b,c) [SU93,
SU94b].

Presence

Visual Dominance

(a) Variation of Presence with Visual Dominance

Presence

Auditory Dominance

(b) Variation of Presence with Auditory Dominance

Presence

Kinesthetic Dominance

(c) Variation of Presence with Kinesthetic Dominance

without VB
with VB

Figure 3.6: Variation of presence with representation system

To summarize these results:

� If a subject was more visually dominant then their reported sense of
presence was higher, regardless of whether they had a virtual body.

� If a subject was more auditorily dominant then they were less present.

46 CHAPTER 3. IMMERSIVE INTERACTION

� For those with a virtual body, the more kinaesthetic they were the more
present they were. For those without a virtual body the opposite was
true.

� The level of presence increases with the �rst perceptual position up to
a certain point then decreases.

The interpretation of these results is quite intuitive. Since with the Pro-
Vision 200 system used in this experiment the experience is primarily visual,
the more visually orientated a person is the more present they are. There is
almost no sound in the environment used for the experiments so it follows
that a auditorily dominated person might feel less present. Having a virtual
body provides a grounding for proprioceptive cues, and so if there is a virtual
body then the kinaesthetically orientated person is more present and if there
is no body they are less present.

The e�ect of the �rst perceptual position is also intuitive but the quadratic
factor is a problem. It may be that it is an artifact of the measurement process
or it could be that some people who generally remember events from the �rst
person standpoint cannot make the suspension of disbelief necessary in order
to become present in the virtual environment.

This led to the conclusion that increasing quality of the visual and audi-
tory channels is important, but is not su�cient for presence in the general
case. The kinaesthetic sense is just as important and for this reason the
virtual body is an essential feature of the system.

3.6 Navigation in Immersive Virtual Environ-

ments

As described in Section 3.1.1 the standard IVE system provides tracking over
short distance because of the limitations of the tracking range and the tether-
ing of the participant to the virtual environment generator. Thus movement
over long distances must be e�ected with a navigation metaphor, that must
be used when the participant needs to move more than a few feet.

As described in Section 3.1.2 two typical navigation metaphors are:

1. Fly in the direction the hand is pointing by pressing a 3D mouse button.

2. Fly along line of sight by pressing a 3D mouse button.

With the standard Provision 200 system, navigation through the vir-
tual environment was performed by pointing in the direction required and

3.7. THE VIRTUAL TREADMILL 47

pressing a button. However there is no velocity control and this results in
participants occasionally overshooting or undershooting their target. An ex-
periment [SU93] found that participants did become used to this means of
navigation though there were in e�ect two navigation metaphors at work,
that is subjects had both an abstract device (the mouse) for navigation but
they could also move their own bodies a short distance. Two comments made
were:

Sometimes [I had] a desperate need to actually walk when virtu-
ally walking, there does seem to be a con
ict between what the
eyes see and the body feels - e.g. my feet appear to be
oating
but I can feel my feet on the ground

Trying to separate virtual and physical movement: constantly
being aware - my initial response was to make the physical move
then forcing myself to use the mouse instead . . . The amount of
concentration I had to use was something I remember particularly.
Moving around with the mouse, forwards and backwards - and
with the helmet turning around - it was di�cult to reconcile the
two ways of moving.

This brings out two problems:

� Sensory dissonance. The contradiction between what the subject ex-
periences in the virtual environment and real environment.

� Mixed Metaphor. There are two separate ways of moving - �rstly by
pressing the button and secondly by moving physically.

A proposed solution, the \Virtual Treadmill" metaphor, was to let the
participant walk but walk on the spot [SSU93]. For short distances within
sensor range the participants could actually take steps but for longer dis-
tances they should walk on the spot facing in the direction they wish to go.
This solution removes the need for a button to be used on the 3D mouse,
and leaves the hand free to perform grasping and selection.

3.7 The Virtual Treadmill

Hardware devices that could be used in the implementation of the walking on
the spot metaphor, such as treadmills , foot switches or extra foot trackers
all have one or more of the following disadvantages:

48 CHAPTER 3. IMMERSIVE INTERACTION

� Cost of purchasing extra equipment

� Extra computation required to process extra data stream(s).

� Extra burden to the participant of suiting up, or further limitations to
possible movements.

The solution proposed was a software solution using neural networks. A
neural network was designed and trained that could detect when the partic-
ipant was walking on the spot by the pattern of movement that the head
makes on each step [SSU93]. The data used was the position information
returned from the Polhemus Isotrak mounted on top of the helmet.

The neural network was a multi-layered feed forward network [HKP91].
The net had two hidden layers of m and n units and a single output unit.
The input to the net consisted of l triples, which were the x, y and z relative
displacements of the tracker for the previous l time steps. From experimen-
tation values of l = 20, m = 10 and n = 5 gave the best compromise between
accurate training and generalization.

There are two type of error that the neural net produces: when the net
indicates the participant is walking when they are not (type I), and when the
net indicates the participant is doing something else, when they are walking
(type II). The �rst type of error is the worst as it is irreversible, and can be
inconvenient when, for example, it causes a participant standing close to an
object to collide with it. To overcome this problem we take the neural net
output and only change from walking to not walking when a sequence of p
1s is observed and change from not walking to walking when a sequence of
q 1s is observed. Again we found from experimentation that values of p = 2
and q = 4 gave most accurate results for both type I and II

The overall success rate is about 95% and a considerable proportion of
the error is caused by the combination of the lag of the Polhemus device and
the smoothing of the net output.

3.8 Evaluation of the Virtual Treadmill

The evaluation of the Virtual Treadmill was threefold [SUS94b, SUS95]:

1. To assess the ability of the training methods and net used to learn
various walking behaviours.

2. The assess whether the walking metaphor is preferred over the pointing
metaphor.

3.8. EVALUATION OF THE VIRTUAL TREADMILL 49

3. To assess the a�ect of the metaphor on the subjects' sense of presence.

To accomplish this two case control experiments were designed in which
two groups of subjects would have to accomplish a simple task. In each
experiment the control group navigated using a point in the direction of

ying metaphor �rst and the experimental group used the virtual treadmill
�rst. All subjects saw a virtual body representation (x3.4).

3.8.1 Performance of the Virtual Treadmill

The �rst experiment was designed to evaluate the training and performance
of neural net and assess the participant's preference for navigation method.
There was a simple task for each subject to perform after a brief training
period to get used to the navigation metaphor. The environment consisted
of a corridor with a doorway at the far end leading to a room with a chair
suspended out of reach over a deep pit. The task was to pick up a small cube
at the dead-end of the corridor then go into room at the other end of the
corridor, and to place the cube on the chair.

16 subjects took part and training data was gathered and neural nets
trained for all subjects regardless of group, with training taking about 30
minutes per net on a Sun Sparcstation 2. The training data was obtained on
the day prior to the actual experience with the participant miming actions
such as walking on the spot, picking objects o� the
oor, turning and looking
around the room in a featureless virtual environment for 5 minutes. This data
was partitioned into 2 sets, one set to train the nets and one to evaluate the
performance.

The performances for the individual neural nets are shown in Table 3.1.
Mean success rate on the evaluation data was 91%, with the Type I error
being 10% and the Type II error 6%.

Given the subjects unfamiliarity with virtual environments, and the lack
of time available to train the neural nets these results were very promising.
This is especially true since during the data gathering they were simply
instructed to walk on the spot without any motion through the environment
taking place.

3.8.2 Ease of Use of the Virtual Treadmill

Two people had to be dropped from the experiment, one simply because they
withdrew after the training period and one was removed because they were
unable to use the \point and
y" metaphor, an anomaly amongst the several
hundred who have used the system.

50 CHAPTER 3. IMMERSIVE INTERACTION

Subject ID Success Rate Type 1 error Type 2 error
% % %

1 92 11 2
2 93 11 3
3 91 15 3
4 85 10 12
5 85 11 5
6 85 15 16
7 92 11 4
8 89 12 9
9 84 6 5
10 90 10 8
11 93 9 5
12 92 7 10
13 92 12 4
14 92 11 5
15 96 6 2
16 95 6 4

Table 3.1: Virtual Treadmill Performance

3.9. EXTENSIONS TO VIRTUAL TREADMILL METAPHOR 51

A questionnaire given to the subjects after the �rst experience contained
three questions designed to ascertain how easy it was to use the metaphors,
see Table 3.2. In summary the subjects found using the neural net a little
easier in general, more straightforward to get from place to place, and maybe
slightly more natural, though all these conclusions are tentative given the
small sample used.

Comparing an individual's answers to the three questions against the
performance of the neural net they used was also interesting since it indicated
that better performance of the neural net leads to more high answers to these
three questions. Figures 3.7(a,b,c) show a general correlation between low
Type I error and higher responses to the three questions.

3.8.3 E�ect of the Virtual Treadmill on Presence

The second experiment was to evaluate the e�ect of the Virtual Treadmill
on presence. The experiment was similar in design except that in the �nal
room reaching the chair was accomplished by either walking straight across
the pit, or by a long detour around the pit on a wide ledge.

Again 16 subjects took part, split evenly between the control and exper-
imental groups.

Subjective presence was reported by three questions in the questionnaire,
reproduced in Table 3.3. These scores were combined by counting 6 or 7
responses from the three questions giving a value between 0 and 3.

A second, non-subjective measure of presence was whether or not the
participant crossed the void or walked around the side

The analysis showed that for the experimental group, the higher the asso-
ciation with the virtual body the higher the presence, whereas for the control
group there was no correlation. Secondly those who walked across the void
reported lower presence score which might be expected since they hadn't
accepted the \reality" of their being a void there.

3.9 Extensions to Virtual Treadmill Metaphor

Prompted by the consideration of a �re-�ghter training application, the Vir-
tual Treadmill metaphor was extended to ascending and descending stairs
and ladders [SUS94b].

The Virtual Treadmill on it's own applies to constrained motion on the
horizontal ground plane. However in certain spaces we would like to be able
to move vertically through the space without resorting to \hand
ying".

52 CHAPTER 3. IMMERSIVE INTERACTION

General Movement Getting From Place to Place

Did you �nd it relatively How di�cult or straightforward
\simple" or relatively was it for you to get from place

\complicated" to move through to place?
the computer generated world?
To move through the world To get from place to place was

was
1. very complicated 1. very di�cult

.
7. very simple 7. very straightforward

Mean Response

Control Group: 5.0 n = 6 Control Group: 4.9 n = 6
Exp. Group: 5.1 n = 8 Exp. Group: 5.5 n = 8

Natural/Unnatural

The act of moving from place to place in
the computer generated world can seem

to be relatively \natural" or
relatively \unnatural". Please rate

your experience of this.
The act of moving from place to

place seemed to me to be
performed . . .

1. very unnaturally
. . .

7. very naturally

Mean Response

Control Group: 3.4 n = 6
Exp. Group: 3.9 n = 8

Table 3.2: Ease of navigation questions

3.9. EXTENSIONS TO VIRTUAL TREADMILL METAPHOR 53

1

2

3

4

5

6

7

4 6 8 10 12 14 16
Type I Error

(a) General Movement

+
+

+
+ +

+ +

1

2

3

4

5

6

7

4 6 8 10 12 14 16
Type I Error

(b) Getting From Place to Place

+
+

+
+

+
+

+

1

2

3

4

5

6

7

4 6 8 10 12 14 16
Type I Error

(c) Movement Natural

+
+

+

+
+ +

+

Figure 3.7: Evaluation of navigation by type I error

54 CHAPTER 3. IMMERSIVE INTERACTION

Please rate your sense of being there in the computer generated world on the
following scale from 1 to 7:
In the computer generated world I had a sense of Please tick against

\being there" your answer
1. not at all 1

.
7. very much 7

To what extent were there times during the experience when the computer
generated world became the \reality" for you, and you almost forgot about
the \real world" outside?
There were times during the experience when the Please tick against
computer generated world became more real or your answer
present for me compared to the \real world"

1. at no time 1
.

7. almost all of the time 7

When you think back about your experience, do you think of the computer
generated world as more something that you saw or move as
somewhere you visited?

The computer generated world seem to me to be Please tick against
more like your answer

1. something that I saw 1
.

7. somewhere that I visited 7

Table 3.3: Subjective presence questions

3.10. PRESENCE MODEL 55

The climbing of steps and ladders can be achieved by a simple extension
to the Virtual Treadmill. The requisite extension to detect collision between
the participant and the model of the steps or ladder inside the virtual envi-
ronment. For a staircase we can move the participant up and down to remain
on the individual steps depending on their direction of motion. However for
vertical ladders, the participant can move up or down at any point, so to
distinguish which action was desired the participant either held their hand
above their head for upwards and below the waist for downwards. This ges-
ture suggests but does not actually mimic the action of climbing a ladder.
At any time, if the participant moved so that the legs of their virtual body
were o� the step or rung they are on, they \fall" to the ground if this were
actually possible in the environment.

As simple usability study with �ve participants showed that this metaphor
was useful and they all completed a given task within a reasonable time of 8
minutes where an expert had taken 3 minutes.

3.10 Presence Model

The results discussed so far in this chapter suggest a more general model of
how a particular participant might react to virtual environment. This is that
presence is a function of two main factors:

� Match between internal representation and sensory data.

� Match between proprioception and sensory data.

The �rst factor is the match between the sensory data and the represen-
tation system that the participant uses. The match is required so that the
participant can form an internal model of the environment. Thus as dis-
cussed in Section 3.5, a vivid visual display might a�ord a visually dominate
participant a high level of presence, but another, who relies on sound to form
their world model a low sense of presence.

The second factor is the match between proprioception, the sense of what
state one's body is in and the sensory data. An example of this is the
Virtual Treadmill where the match between the optical
ow experienced
during motion through the environment, and the nearly match proprioceptive
state of walking on the spot. In general the changes to the sensory data over
time must match what the participant expects to happen when they make
an action due to their knowledge of proprioceptive causal relationships in the
past. This does not exclude fantastic virtual environments, but to become
present in them the participant must become accustomed to the rules of cause

56 CHAPTER 3. IMMERSIVE INTERACTION

and e�ect in the environment. A corollary of this is that when designing
interaction metaphors and gestures, they should relate as close as possible
to the task that will be performed, a design paradigm called Body-Centred
Interaction [SU94a].

The factors that a�ect presence that were listed in Section 3.3 can be
used to elaborate this model, see Table 3.4[SUS94a].

Vividness High quality information presented
in an unobtrusive manner

Consistency Sensory data should be
consistent.

Interaction There should be many possible
interaction within the environment

Virtual Body Self-representation should be
anthropomorphic and correlate
to the movements of the participant

Cause and E�ect The participant should be able
to model the cause and e�ect
relationships within the VE

Table 3.4: Factors a�ecting presence

Vividness [Ste92] and Consistency concern the degree of immersion
that the display gives and provide a grounding upon which the match between
sensory data and internal representation can take place. The Virtual Body
a�ects both the match between sensory data and internal representation.
Firstly the participant should see a body in the virtual environment, since
they do so in reality and is part of their internal representation of themselves
in an environment. And secondly the virtual body is one of the cues the
participant will rely on to gauge the e�ect of actions they make, and so should
mirror what the participant's proprioception tells them about the position
of their body. Other rules of Cause and E�ect should also maintain this
match between sensory data and proprioception. Interaction should of
course maintain the match between sensory data and proprioception, but
a range of interactions also allows the participant to become engaged in
tasks and model the Cause and E�ect loop of the environment, through
performing those tasks.

3.11. CONCLUSIONS 57

3.10.1 Further Results

Further con�rmation of this model and further results on factors a�ecting
presence were provided by another study [SUS94a]. This con�rmed the re-
sults of Section 3.5.1, presence was positively correlated with visual domi-
nance, negatively with auditory dominance and positively with kinaesthetic
dominance since a virtual body was used. Another factor that was found to
in
uence presence was the stacking depth of the environment. The stack-
ing depth referred to the manner in which the participants moved between
di�erent rooms within the virtual environment. One group would navigate
through doors, whilst the other group would don a virtual head mounted dis-
play, which would transport them to another environment. This navigation
method was meant to mimic the way in which the participant enters the �rst
virtual environment by putting on a real head mounted display. Presence was
found to be positively correlated with depth, i.e. the number of environment
visited, when using the virtual HMD and negatively when having to move
through the doors.

In another study the addition of 3D sound cues was tentatively found to
switch the correlation of auditory dominance with presence from negative to
positive [Pat94]. This was as expected since as noted in Section 3.5.1 the
Provision 200 system used for the initial experiments had poor support for
sound e�ects, whereas the system used for the 3D sound study was a later
model, a Provision 100 VPX with Beachtron sound card and Akai 3200 sound
sampler.

3.11 Conclusions

This chapter has shown how interactions metaphors combined with the repre-
sentation within the environment can provide an enhanced sense of presence
within a virtual environment. In turn such a sense of presence can lead to
a participant's behaving naturally within the virtual environment and using
known skills to perform tasks. The e�ect of interaction and presence is cir-
cular in that certain interaction metaphors allow the participant to match
sensory data with proprioception allowing them to perform tasks within the
environment which in turn reinforces the sense of presence.

The presence model arrived at in Section 3.10 indicates several criteria
to aim for when constructing and using interaction techniques in virtual
environments. The body centred interaction paradigm maintains that making
interaction techniques mimic the task in reality should allow the participant
to not only comprehend the metaphor more clearly but be able to model the

58 CHAPTER 3. IMMERSIVE INTERACTION

causal rules of the environment easily.
A further example of this paradigm is world scaling metaphors [SU94a].

Rather than using iconic hand gestures to scale the world [BHV92], the
gesture used is that of scaling oneself. To scale the world up, you make the
gesture of squashing yourself, by pushing down on your head and crouching
down. And to scale the world up you crouch and pull yourself up by mimicing
grabbing your head and standing.

However experienced participants may want to be able to use iconic ges-
tures as shortcuts much as experienced window environment users use key-
board short cuts. Given the subtlety of expression of human gesture, such
an interface could be very broad, given accurate tracking on a number of
sensors using the techniques described in Sections 3.7 and 3.2.2. Creating
such gestures would most easily be accomplished within the virtual environ-
ment as then the participant can demonstrate the gesture in context and
with reference to their virtual body representation within the environment.
Also a gesture such as tapping one's belt to bring up a virtual tool belt is a
participant-speci�c gesture depending on body shape and would need to be
recognized slightly di�erently for each participant.

The idea of creating interactions by demonstration by referring to one's
representation within the virtual environment is one of the motivations for
the VEDA system described in Chapter 5.

Chapter 4

Programming Interactions with

Virtual Environments

With many applications now being developed for immersive virtual envi-
ronment systems there is a growing need for e�ective tools to create and
manipulate the environments that will be presented. To date most author-
ing systems have focussed mainly on the appearance of the environment that
is, the geometry, colour, lighting and position of objects within a three di-
mensional scene. This is epitomized by the recent generation of VRML 1.0
(Virtual Reality Modelling Language) [BPP95] browsing and authoring tools
which concentrate on the presentation, but not the behaviour and interaction
with objects.

The behaviour of objects and especially the interactions of the user with
the environment are usually hard-coded within the application that generates
the virtual environment. Various toolkits have been designed to assist within
the construction of these applications and some current systems allow some
scripting of simple objects behaviours and provide a standard application
that will display these.

Still, the usual method for programming most systems is to display the
environment, enter the system and view it by putting on a helmet or shutter
glasses, then come out make changes and either re-run or at worst re-compile
the application.

To escape this loop methods can be borrowed from the �eld of visual
programming languages and the eventual aim of the next chapter is to show
how an immersive virtual environment can be programmed from within, that
is whilst the participant is immersed, without leaving the environment and
without having to re-run or re-compile the main application.

This chapter reviews current programming systems for virtual environ-
ments and brie
y reviews the areas of visual programming most relevant for

59

60 CHAPTER 4. PROGRAMMING INTERACTIONS

the eventual construction of an immersive programming language for virtual
environments as described in Chapter 5.

Section 4.1 details various scene description languages in order to illus-
trate the fundamentals of virtual environment design. Section 4.2 illustrates
the breadth of programming paradigms for virtual environment libraries and
the services that they provide. Section 4.3 gives an overview of visual pro-
gramming languages. Section 4.4 gives speci�c detail about data
ow visual
languages since this will form the basis of the paradigm used in Chapter 5.
Sections 4.5 and 4.6 review non-immersive and immersive visual languages
for programming virtual environments

4.1 Virtual Environment Scene Description

Static scene description languages are typi�ed by Virtual Reality Modelling
Language (VRML)1.0 [BPP95, Har95]. VRML is a hierarchical scene graph
language, where each node in the graph can have child nodes that inherent all
the current properties, such as transformation, texture and colour, of their
parents. To render such a graph it is traversed in order, with properties
accumulating until a geometry node is reached which is rendered with those
current properties. There is a structural mechanism that allows the scope of
such properties to be limited and since VRML was designed for integration
with the World Wide Web and its browsers, VRML scenes can contain hyper-
links to other scenes or other document types.

The basic nodes of the VRML language are:

� Geometry

� Appearance

� Lights and Cameras

� Transformation

� Structure

Geometry nodes include basic building blocks as Cube, Cylinder, Sphere
and more general geometry sets: PointSets, IndexedLineSets and Indexed-
FaceSets. The set nodes are de�ned with reference to an array of 3D coordi-
nates speci�ed by a Coordinate3 node. A PointSet node contains a range of
indices which reference the array of coordinates speci�ed by the Coordinate3
node. IndexedLineSet contains one or more lists of indices into the coor-
dinate array which specify the line's path. IndexedFaceSet contains one or

4.1. VIRTUAL ENVIRONMENT SCENE DESCRIPTION 61

more lists of indices into the coordinate array which specify a closed polygon.
It is also possible to specify normals for each vertex, line, face or object using
the Normal and NormalBinding nodes1. Since IndexedFaceSets can de�ne
arbitrary shapes, another node, ShapeHints, can be used to give the renderer
directions about how to optimize drawing because of the nature of the object
being de�ned.

Appearance nodes specify materials and textures to apply to lines and
faces. Materials can be speci�ed for each vertex, line, face or object by using
the Material and MaterialBinding nodes. The Material de�nition contains
information about ambient colour, di�use colour, specular colour, emmisive
colour, shininess and transparency 2. Textures are more complicated. Firstly
a Texture2 node de�nes a �le to use as the texture and whether the textures
tiles the two possible directions. Secondly a Texture2Transform node speci-
�es how texture coordinates are applied over the object. Finally a Texture-
Coordinate2 node contains an array of 2D coordinates that can be indexed
when de�ning line and faces that will give the 2D texture coordinate of each
3D vertex.

Lights and Camera Point and directional lights are supported. Both
lights have a colour, intensity and
ag to determine whether or not they are
on. Two types of camera are supported, Perspective and Orthographic.

Transformation Each object is de�ned within a local coordinate sys-
tem, which is transformed by a modelling transform into world coordinates.
Transformations provided are Scale, Orientation, Translation, and Trans-
form. Transform is a combination of a scale, orientation and rotation, along
with a centre point about which the individual transformation take place.
Transformations are relative to the current modelling transform de�ned in
the scene graph so objects that are children of other nodes inherit their trans-
formation and concatenate their own to arrive at their modelling transform.

Structure Separator nodes provide the mechanism with which properties
are given scope. When a Separator node is encountered the current state

1In fact the Normal node contains an array of vectors to use as normals, and the Nor-
malBinding describes how to use this array when de�ning subsequent geometry. Binding
types include to specify normals for whole objects, for part objects, for each vertex or for
each face. The normal can also be used in order from the array or via an index speci�ed
as part of the IndexedLineSet or IndexFaceSet lists.

2The bindings for materials are similar to the bindings for normals.

62 CHAPTER 4. PROGRAMMING INTERACTIONS

is saved (state includes cameras, lights, coordinates, materials etc.), and
reloaded once the child nodes have been traversed. A rudimentary form of
object culling can be performed by using separators where each separator
maintains a bounding box of its' sub parts that can be culled against the
view volume. WWWInLine nodes allow VRML objects to encapsulated and
incorporated into other scenes. It speci�es a VRML �le via an arbitrary URL
which is inserted into the scene graph at the current point. WWWAnchor
nodes specify hyperlinks to other scenes or other types of documents. A
�nal interesting structural mechanism that VRML provides is level of detail
switching with a LevelOfDetail node. This node contains several values that
correspond to screen areas. If the screen area of the rendered geometry is
greater than the �rst value then the �rst child node is rendered in the next
frame. If it is between the �rst and second values the second child is drawn
and so on.

Figure 4.1 shows the description of an example scene containing two ob-
jects. It consists of a single camera at the origin and a slightly green light
that is behind and to the right of the camera when the scene is entered. There
are two separators following the camera de�nition each containing a complete
object description. The �rst is a yellow cylinder in front and to the left of
the initial camera position. The cylinder itself is speci�ed by it's radius and
height, and the current properties are rotation by �=4 radians around the X
axis, translation by the vector (�3; 0;�10) and a material which is yellow.
The material binding isn't set and so defaults to the material being applied
to the whole object. The second object is a cube but an IndexedFaceSet
node has been used rather than a Cube node. The Coordinate3 node spec-
i�es the eight corner vertices and the IndexedFaceSet speci�es the faces as
lists of indices into the Coordindate3 node separated by -1. The ShapeHint
node here provides a useful optimization for browsers to use. Because an
IndexedFaceSet can de�ne arbitrary shapes, it can't be assumed what order
the faces are de�ned in, and therefore no back face clipping can be done. The
ShapeHint here tells the renderer that the shape is solid, that is the external
surface is complete, so there is no need to draw back facing polygons. The
ShapeHint also tells the renderer which orientation the faces are in so it can
work out a normal and use that for back face elimination.

The scene as viewed in Webspace from Silicon Graphics [Sil] is shown
in Figure 4.2. Webspace is a desktop application that works as a helper
application to Web browsers. The controls at the bottom are one of two
interaction metaphors used to interact with the scene. The handle in the
middle turns the view left and right and moves it forwards and backwards in

4.1. VIRTUAL ENVIRONMENT SCENE DESCRIPTION 63

#VRML V1.0 ascii

Separator {

DirectionalLight {

direction -1 0 -1

intensity 1

color 0.7 1.0 0.7

}

PerspectiveCamera {

position 0.0 0.0 0.0

}

Separator { # The yellow cylinder

Material {

ambientColor 0.3 0.3 0 # Pale Yellow

diffuseColor 1 1 0 # Yellow

}

Translation { translation -3 0 -10 }

Rotation { rotation 1 0 0 0.785 }

Cylinder { radius 2.0 height 2.0 }

}

Separator { # The blue cube

Material { diffuseColor 0 0 1 } # Blue

Translation { translation 3 0 -10 }

Scale { scaleFactor 2 1 2 }

ShapeHints { vertexOrdering COUNTERCLOCKWISE shapeType SOLID }

Coordinate3 {

point [-0.870000 0.940000 0.732500,

-0.870000 -0.560000 0.732500,

0.560000 -0.560000 0.732500,

0.560000 0.940000 0.732500,

-0.870000 0.940000 -0.732500,

-0.870000 -0.560000 -0.732500,

0.560000 -0.560000 -0.732500,

0.560000 0.940000 -0.732500]

}

IndexedFaceSet {

coordIndex [0, 1, 2, 3, -1,

6, 7, 3, 2, -1,

7, 6, 5, 4, -1,

4, 5, 1, 0, -1,

1, 5, 6, 2, -1,

4, 0, 3, 7, -1]

}

}

}

Figure 4.1: An example VRML �le

64 CHAPTER 4. PROGRAMMING INTERACTIONS

the direction of view. There is a small dial on the right of the handle that
corresponds to looking up and looking down. The cross hairs on the left can
be used to specify a point on an object to approach. The right hand control
slides the view up and down and left and right in the direction of the view
window.

Figure 4.2: Example VRML scene viewed in Webspace

Other scene description languages provide much the same visual elements,
though some deal with more general constructive geometry and some only
allow object descriptions with simple triangles since they are optimized for
certain processors. However within VRML there is no ability to specify
sounds, behaviour, interaction or networking.

Sounds can easily be added to a scene and simple behaviours can be
described in terms of reactions to known events such as Collision, Selecting
and Picking. The MAZ �le format from Division [Div94a], an example of
which is shown in Figure 4.3, provides both such abilities.

This example de�nes a toy plane that follows a spline path once the
event SCENE ENABLE has been received that indicates the start of the
animation in the virtual environment and will respond to being touched by
the participant by playing a sound. It also has a propeller object as a child
which rotates in its local coordinate system whilst attached to the plane and
moving in the plane's coordinate system as well.

Some scene description languages have been extended until they be-
come complete programming languages where arbitrary behaviour can be
described. The DIVE system has a language that allows object to contain

4.1. VIRTUAL ENVIRONMENT SCENE DESCRIPTION 65

OBJECT splane {

VISUAL {

GEOMETRY "office/splane"

}

EVENT {

SCENE_ANIMATE:

followSpline(*, "office.spl", 0.01, -1);

BREAK;

TOUCH:

soundOn (radiototower, -1);

BREAK;

UNTOUCH:

soundOff (radiototower);

BREAK;

}

OBJECT propeller {

VISUAL {

GEOMETRY "office/sprop"

}

EVENT {

SCENE_ANIMATE:

spin(*, 0, 10);

BREAK;

}

}

}

Figure 4.3: A MAZ �le example

66 CHAPTER 4. PROGRAMMING INTERACTIONS

object {

material "red"

view {

SPHERE

}

begin.tcl

proc move_up {type src_id id pid} {

dive_move $id 0 0.5 0 LOCAL_C

}

dive_register INTERACTION_SIGNAL DIVE_IA_SELECT move_up

end.tcl

}

Figure 4.4: DIVE Tcl extension example

tcl scripts [Ous94] to be executed as events arrive [CH93, FH95], blurring
the distinction between the scene description and the virtual environment
generator or browser providing the underlying global services for the virtual
environment such as collision detection and device interaction. Figure 4.4
shows an example of a script that de�nes a red sphere that moves up when
the user selects it.

4.2 Virtual Environment Programming Libraries

Programming systems for virtual environments cross the full range of pro-
gramming paradigms, from low-level imperative programming libraries, to
object-orientated toolkits, to declarative systems for environment descrip-
tion, to interpreted scripting languages.

The most basic form of virtual environment programming library is the
graphics toolkit for interactive rendering such as OpenGL, a standard de-
signed by Silicon Graphics but adopted by many workstations vendors, or
Renderware designed for fast software rendering on PC platforms. Other
libraries are usually built around such a rendering library but with services
to aid in the speci�cation of virtual worlds, though for applications requiring
optimal performance a last resort is to return to the root rendering system
and ignore the overhead of the VE toolkit. The virtual environment pro-
gramming libraries might include extra services such as functions to load

4.2. VIRTUAL ENVIRONMENT PROGRAMMING LIBRARIES 67

object geometry, interact with peripheral devices, transform objects, and
detect collisions between the geometry of objects.

Many toolkits now exist, the most widespread of which is WorldToolKit
from Sense8 Corporation. It provides a C library that covers all aspects of
virtual world application building such as:

� Sensor con�guration and interaction

� Loading of various object �le formats and dynamic geometry

� Rendering

� Collision detection

� Object hierarchies

� Event Handling

The WorldToolKit API contains over 650 function calls, but scene de-
scription is limited in the base API to the hard coding of the behaviours of
objects in C leading to a compile and test cycle as the application is re�ned.

A WorldToolKit application runs with a simulation loop that executes in
serial order:

1. Read sensors

2. Call actions functions for whole world and individual objects and up-
date objects with sensor data

3. Render universe

However as noted in [RCM89] a simple simulation loop leads to two prob-
lems: multiple agent problem and animation problem.

The multiple agent problem occurs when the various simulation and in-
put/output device agents, which will have di�erent time constraints, are
competing for processor time. A good example of this problem is given by
systems that use a Dataglove for input. One way of getting data from the
glove is by `polling' the glove, where the device interface requests data from
the glove and then has to wait until the data arrives before it can carry on.
Such a system will be seriously slowed down by the lag rates incurred by the
use of the magnetic tracker.

The animation problem then arises when the system is supporting smooth
animated graphics and also the various agents described above. The speci�c
problem here is that we wish to have the best possible but constant frame

68 CHAPTER 4. PROGRAMMING INTERACTIONS

rate for the display, but however we don't want to achieve this by slowing the
system down so that no matter what demands the applications and devices
make, the frame rate will not decrease.

One solution is to distribute the various processes over several processors,
with the graphics rendering being the most obvious choice because of it's high
processor demands and the availability of dedicated acceleration boards. In
fact one of the early dedicated virtual environment systems the RB2 system
[BBH+90] from VPL was designed in precisely this manner with a Machin-
tosh controlling the virtual world and input/output devices and two Silicon
Graphics Irises rendering the graphics.

This paradigm of separating the virtual world into many processes run-
ning concurrently was the basis for the Minimal Reality Toolkit from the
University of Alberta [SLGS92]. Their Decoupled Simulation Model broke
virtual environment generation up into four distinct components, Computa-
tion, Presentation, Interaction and Geometric Model. Figure 4.5, adapted
from [SLGS92], shows the relationship of these components and a �fth au-
tonomous process - the participant. The original paper's parenthesised ele-
ments indicate unimplemented elements.

Interaction

Computation

Geometric Model

Presentation

(Voice)
Body State

Visual (Force)Audio

Figure 4.5: Elements of the decoupled simulation model

The Interaction component handles device driving and receives body state
including positions and gesture information.

The Computation component manages all non-graphical elements of the
application and runs a simulation model which is driven by the participant's
interaction with the environment.

The Geometric Model maintains the database of the environment. It
is driven by the Computation element, since it converts relevant data from

4.2. VIRTUAL ENVIRONMENT PROGRAMMING LIBRARIES 69

the computational model into visual, audio and force data. It is also driven
by the Interaction since the actions of the participant should be presented
immediately whilst their e�ects are processed by the computation element.
An example of this would be presenting visual feedback of a participant's
arm moving as soon as they move it, and before collision detection can be
carried out, which might then determine that they tried to move it through
a solid object.

The Presentation component then renders the Geometry with respect to
the position that the participation is currently in.

An application thus consists of several concurrent processes that can be
run on separate processors. These processes perform di�erent tasks and com-
municate common information via a data sharing package which supports one
way communication. The MR toolkit provides several library packages that
aid the construction of these processes. Apart from the data sharing pack-
age, there are packages for di�erent devices, packages for visual and sound
displays a Workspace Mapping package that converts device coordinates into
environment coordinates, a Panel packages that provides a way of implement-
ing 2D style interfaces in a 3D environment and a Peer package that allows
two MR toolkits application processes to commmunicate messages between
the group. At this level it provides similar services to WorldToolKit.

Many other toolkits exist though they vary in the exact devices and object
formats they support, the ability to support multiple participant and mul-
tiple worlds and the ability to distribute tasks amongst available resources.
Division's dVS environment and VC library [Div94b] will provide a more
in-depth example since the work described in the next chapter will be based
upon these.

4.2.1 dVS and the VC Library

The VC library is a high-level toolkit for creating virtual environments that
relies upon dVS, a runtime environment that provides services essential for
creating virtual envrionments. An application written in the VC library does
not need to manage the processes that generate the virtual environment
displays, but works at an object database level, where it manipulates and
accesses a world database that describes objects, their properties and events
within the environment. dVS runtime provides several processes, or actors,
that also access this database and act upon it. These include:

� Visual actor renders graphical views of the object database.

� Audio actor renders auditory views of the object database.

70 CHAPTER 4. PROGRAMMING INTERACTIONS

� 3D tracking actor manages tracking devices and processes their raw
data.

� Collision actor processes object movements and generates collide events.

� Body actor generates an object that represents the participant within
the environment.

The relationship between these software layers is shown in Figure 4.6,
adapted from [Div94b]

Visual Audio
3D

tracking

Detection
Collision

Code
Application

User

VCToolkit

Gloves,etc

Operating System

Services
dVS

Figure 4.6: Relationship of dVS and the VC library

The initialisation of a VC application involves adding objects to a database,
and registering a set of callbacks that depend on events generated by the other
actors. Each actor generates events that re
ect the services it provides. The
body actor returns the position of the head and the hand, and the state of
any button device the user is holding. If there is a glove, then a glove actor
returns the posture of the hand and so on.

The object database contains properties of objects similar to those that
scene description languages provide (x4.1). Indeed the MAZ �le format de-
scribed in Section 4.1 is designed is be loaded and animated by a standard
application written in the VC library. In a MAZ �le, events trigger VC
coded functions from a standard set, see Figure 4.3, but more complicated
behaviours must be coded by writing VC code directly. Figure 4.7 gives the
outline of some example code that creates an environment with two spinning
cubes.

The VC toolkit thus provides a general programming system for virtual
environments. The actor model is well-suited to distributed parallel process-
ing. Collaborative envrionments are also simple since more than one set of

4.2. VIRTUAL ENVIRONMENT PROGRAMMING LIBRARIES 71

#include <vctools.h>

VCEntity_Ptr object1, object2;

/* Callback function to rotate the objects, this gets called

each time the interrupt fires */

void alarmHandler(void *data) {

VCSpin(object1,VC_Y,20.0);

VCSpin(object2,VC_Y,20.0);

}

main(int argc, char *argv[]) {

ActorId actor_id;

VCEntity_Ptr eptr;

Object_data objects;

/* Initialise an application Actor and collect process args */

actor_id=VCApplicationInit(&argc, argv);

/* Create a light */

eptr = VCConstruct(NULL,NULL);

VCLighting(eptr, VC_AMBIENT_LIGHT, NULL, NULL);

/* Construct two objects */

objects1=VCConstruct(NULL,NULL);

objects2=VCConstruct(NULL,NULL);

/* Populate the objects with geometry */

VCVisualise(object1,"misc/teapot",NULL);

VCVisualise(object2,"misc/teapot",NULL);

/* Shift one of the objects away from the origin */

VCTranslate(object2,15,20,0);

/* Set up all the call backs to allow picking and moving */

VCAddSignalCallback(SIGALRM,alarmHandler,(void *) data);

/* Start the main event handling loop */

VCMainLoop();

}

Figure 4.7: VC code example

72 CHAPTER 4. PROGRAMMING INTERACTIONS

rendering and device processing actors can be attatched to the central object
database provided by the dVS runtime.

4.3 Visual Programming Languages

The term \Visual Programming" has come to include a whole collection of
techniques and environments that use visual constructs to build programs or
display output [Cha87, Shu86, Mye86, Shu88, aMMB89, Cha90]. Shu's tax-
onomy breaks the subject up under the following headings [Shu88, Chapter
1]:

� Visual Environments

{ Visualization of data, program execution or software design

{ Visual coaching

� Visual Languages

{ for handling visual information

{ for supporting visual interactions

{ for actually programming

The area most relevant to the research described in the next chapter is
diagrammatic data
ow programming languages, but because the environ-
ment within which you program is also the one in which the programmed
actions take place, there are elements of visualization of data objects and
program execution, since the environment itself contains the program and
the program manipulates the environment. There is also an element of vi-
sual coaching in that, for example, training a gesture recognizer is done by
demonstrating the action to be recognized and certain behaviours of objects
can be demonstrated.

4.3.1 Visualization of data, program execution or soft-

ware design

These systems provide graphical views of the entities and characteristics of
a computer system or program [SP92a, PBS93]. Statsko et al. identify a
four-dimensional characterization of these visualization systems:

� Aspect

4.3. VISUAL PROGRAMMING LANGUAGES 73

� Abstractness

� Animation

� Automation

The di�erent aspects of the system that can be visualized are the pro-
gram text, data structures, run-time state, control
ow or algorithmic meth-
ods.

Abstractness relates to the type of visualization system used. For ex-
ample an integer might be represented as a counter if its range is unknown,
but at a higher level of abstraction, where it is known to be a percentage, it
might be depicted as a pie-graph.

Animation refers to whether the visualization is dynamic or not. For an
example a
owchart visualization of a program might be animated so that
the statement being executed was highlighted.

The level of Automation describes the way in which the visualization is
formed, either by interpretation of the memory at run time or by the addition
of explicit visualization commands at run-time.

Perhaps the oldest form of visualization system is the data
ow diagram
or pretty printer for program code [Tri88]. These systems display the code
in a graphic structure that highlights certain aspects of the code's structure
such as branching, recursion or looping.

The best examples of data visualization systems is the Balsa family [BS84,
BS85, Bro88b, Bro88a]. Balsa is an animation system initially used to teach
aspects of algorithms to students. The animation of, say, a depth search
algorithm traversing a graph is created by the augmentation of the program
code with visualization prompts. Thus the degree of automation is low but
the resulting animations can be quite abstract and informative.

Other examples of visualization systems include those from Brown Uni-
versity [Rei85, Rei87, RGR89], PROVIDE [Moh88], PVS[Fol86], Animus
[Dui88] and PegaSys [MH85]

4.3.2 Visual coaching

These systems attempt to provide some programming support by inferring
some of the required code by monitoring the user working through the prob-
lem or supplying input-output pairs. The emphasis is on demonstrating in
some way constraints to apply or behaviours for objects to adopt without
resorting to `telling' the objects what to do with explicit code.

Pygmalion integrated this ability with one of the �rst visual programming
languages [Smi77]. The basis of this system in an editor that can remember

74 CHAPTER 4. PROGRAMMING INTERACTIONS

the sequence of operators applied to a set of icons. Smith distinguishes his
system from other visual programming systems so:

PYGMALION has no representation for telling a program any-
thing; PYGMALION is an environment for doing computations.
If the system happens to remember what is done, then a program
is constructed as a side e�ect

Thinglab is a simulation system that uses constraints to specify the re-
lations between the objects of the simulation [Bor81]. It supports graphi-
cal speci�cation of these constraints by giving two views of the object use
andconstruction. The use view gives the appearance of the object whereas
the construction view shows the composite objects and the constraints be-
tween them. The constraints can be created by demonstration. For example
making a point lie on a line can be demonstrated by placing the point over
the line. [Bor86a, Bor86b].

With the Peridot system users can create user interface management sys-
tems by creating an interface and specifying the various widget parameters
by giving example values [Mye87, Mye90a].

The Programming by Rehearsal system's metaphor is that of a stage
where performers interact by sending cues to each other [FG84]. The pro-
gramming of a system proceeds in �ve steps:

� Audition various performers by observing their reactions to certain
cues.

� Place all the required performers on the stage.

� Block the performance by positioning and resizing the performers.

� Rehearse the production by showing each performer how it should react
to the cues sent to it.

� Store the production for later use.

A production then consists of the actions taking place on the stage, pos-
sibly supported by other o�-stage performers.

The Eager system generates program by trying to spot repetitive patterns
in the user's activity [Cyp91]. Built around a Hypercard system, Eager can
anticipate tasks by highlighting what it expects the user to do next. Once
Eager demonstrates that it follows the procedure being demonstrated it can
be instructed to complete it.

4.3. VISUAL PROGRAMMING LANGUAGES 75

4.3.3 Visual Languages for handling visual information

and visual interactions

These are not considered proper visual programming languages by some re-
searchers since they are primarily text based languages to specify or interact
with visual information or support visual interactions [Mye90b].

Examples that Shu [Shu88, chapter 6] gives include Pictorial Structured
Query Languages for manipulating pictorial and alphanumeric databases
[RL84] and the Spatial Display Management Systems mentioned earlier,
where views of standard databases are constructed by associating attributes
of icons with tuples of the database [Her80].

4.3.4 Visual Languages for actually programming

These systems allow programming with graphical objects. Early systems
evolved from basic program visualization systems, where the program struc-
ture is illustrated by the layout, by allowing the program to be constructed
within such a view by the addition and editing of the graphical symbols. They
can be broken down by the type of visual languages employed, diagrammatic,
iconic or forms based.

PIGS [PN83], is an example of such a diagrammatic. It uses Nassi-
Scheiderman diagrams that can be directly edited and supports interactive
debugging by allowing the user to watch the
ow of control around the dia-
gram. PIGS is an example of a diagrammatic visual language.

Data Flow diagrams are also diagrammatic, but rather than illustrating
the
ow of control they concentrate on illustrating the
ow of data between
application objects and many recent systems are based on this model [Hil92].
Examples are described at length in Section 4.4.

The Pict family of objects characterize iconic languages [GT84, GMD90].
Within the Pict environment users can program by using a joystick to place
icons that can be connected together. Once the program has been con-
structed and compiled its execution is animated and the
ow of control can
be observed passing through the layout. Unlike data
ow systems the pic-
ture produced corresponds directly to an imperative program. VisaVis is the
equivalent system for describing functional programs [PTVM92, PVM94].

Form based systems such as Formal [Shu85] capitalize on the users fa-
miliarity with traditional forms to enable them to implement complex data
manipulation tasks. The basic approach is to specify a form corresponding
to the output, give the source of the information and then specify properties
that certain cells must satisfy.

76 CHAPTER 4. PROGRAMMING INTERACTIONS

4.4 Data Flow Languages

The basic concept of a data
ow language is that of a collection of �lters that
accept a number of input data streams, process them and then output one or
more data streams. The whole system is driven by input �lters that sample
external events and eventually the data streams reach output �lters. The
obvious graphical representation is that of a graph with nodes representing
the �lters and arc representing the data connections.

The types of �lter and data allowed depend on the application domain
the system is intended for. The original HI-VISUAL system was a data
ow
language for image processing where �lters correspond to traditional signal
�lters [IH87]. An example HI-VISUAL program might have source nodes
such as cameras and �lter nodes such as edge detect and binarize.

ConMan also has a restricted domain, that of graphical application devel-
opment [Hae88]. It is restricted to connecting together pre-built modules, for
example a 2D curve editor is connected to a 3D sweep and view module. The
data being communicated in this example consists of lists of transformations
to specify the views and geometry lists to specify the objects.

The Application Visualization System (AVS) supports scienti�c visual-
ization applications [CFD+89], though it too is also restricted to the �nal
integration of software modules and is not a general programming system.
Serius is a similar system for the Machintosh environment and has more
emphasis on constructing the user-interface [Lan91].

Systems have been developed that allow more general programming. Show
and Tell is designed to introduce children to the concepts of programming
[KCM90]. Example programs use various sets of �lters, from logic gates and
arithmetical symbols to phone dialing and printer output.

Prograph 2.0 is another programming system that integrates aspects of
AI languages and the object-orientated paradigm into a data
ow language
[CP88, Gol91]. A data
ow language is used to specify methods of the objects.

Cantata is a data
ow language that forms the basis of the Khoros appli-
cation development system [RW91]. Cantata is multi-paradigm in that the
�lters are connected is a node and arc type editor, but the �lters themselves
can have parameters that are speci�ed using forms.

Another area where data
ow programming has been successful is in
the speci�cation of user interfaces. One example of this is the Fabrik pro-
gramming environment [LCI+88, IWC+88]. The �lters in this case include
graphical manipulation �lters alongside arithmetic and string handling �l-
ters. Data may also include graphical objects and the
ow of data may be
bi-directional.

4.5. VISUAL PROGRAMMING FOR VIRTUAL ENVIRONMENTS 77

4.5 Visual Programming for Virtual Envi-

ronments

Distinction must �rst be made between visual languages to describe virtual
environments and visual languages that are presented within virtual environ-
ments.

The �rst type of system are visual languages for describing virtual en-
vironments that are used external to the environment on a desktop system.
xDVISE is an X-Windows program that generates a desktop display of the
object hierarchy during its' running which allows customization of object
properties and the hierarchy interactively at run time through a forms in-
terface [Div94c]. Figure 4.8 shows 3 windows, one with the virtual world
showing a view of a cooker in a kitchen, one showing the part of the ob-
ject hierarchy where the cooker is de�ned and one showing the part dialogue
de�ning the object properties, speci�cally position, orientation and scale.

Figure 4.8: xDVISE display of a kitchen showing the scene hierarchy and a
property form

A similar desktop display is used in the VR-MOG system which also
provides a 2D layout tool as well as a forms based properties editor [CRP95].
In addition it also allows editing of event based behaviours at a level similar

78 CHAPTER 4. PROGRAMMING INTERACTIONS

to that provided by the DIVE toolkit scene description language (x4.1), from
which it is derived.

Body Electric [Kal93a, pages 212-219] from VPL is a data
ow language
that was used to describe virtual environments on the RB2 (Reality Built
for 2) system [BBH+90] . Data
ows from the input devices through data
`massage' units to drive events in the virtual environment.

The AVS system for scienti�c visualization has also been extended to
support visualization within virtual environments [She93].

The second type of system involves a visual language which rather than
being manipulated on a 2D display is manipulated within the virtual envi-
ronment.

Glinert proposes extending his BLOX method which uses
at jigsaw like
pieces to 3D using cubes that can be snapped together much like childrens
building blocks [Gli87].

Producing 3D animations is the aim of at least two visual programming
systems which illustrate di�erent directions these tools can take. Virtuality
Builder II [GB95] is an integrated 3D environment in which constraint and
object paths can be speci�ed to create animations. Though not a complete
programming language, Virtuality Builder II can be used to specify many
complex animations. VPLA [Lyt95] is an interpreted language speci�ed by
a 3D network editor that describes components of an animation in terms of
hierarchical objects and actions on them such as transformations, modelling
operations, deformations, particle systems and recursive procedures. VPLA's
output is a RIB �le for subsequent non real time rendering by Pixar's Ren-
derman.

Three virtual environment languages for actually programming that have
been implemented are CUBE [NK91, NK92, Naj94], Lingua Graphica [SP92b]
and CAEL-3D [vRCBF95]. CUBE uses a 3D data
ow metaphor to describe
logic programs. Two versions of CUBE are reported. The �rst CUBE-I sim-
ply allows visualization of the result of evaluating a prefabricated program,
whilst CUBE-II, illustrated in Figure 4.9, is an interactive desktop editor.

Lingua Graphica is a 3D editor for a C++ base language. The Lingua
Graphica workspace looks like a tool board with the tools being the various
library functions, primitives and pre-de�ned types. These can be juxtaposed
with the relations between the objects corresponding to the syntax rules of
the language, see Figure 4.10. The programs Lingua Graphica was designed
to modify were in fact the virtual environment description, but when the pro-
grammer made changes within the virtual environment, the new description
would have to be saved out and re-compiled before it could be tested.

CAEL-3D (Computer Animation Environment Language), is also a gen-
eral language programming environment based on a large subset of Pascal.

4.5. VISUAL PROGRAMMING FOR VIRTUAL ENVIRONMENTS 79

Figure 4.9: CUBE-II program for converting fahrenheit to celsius

Figure 4.10: Lingua Graphica example

80 CHAPTER 4. PROGRAMMING INTERACTIONS

However the authors re�ne their application domain to that of animation con-
struction since it exploits the 3D nature of the environment and enables a
high degree of integration between the environment and application domain.
Figure 4.11 shows the heading of a Fibonacci function.

Figure 4.11: Program described in CAEL-3D

4.6 Immersive Description of Virtual Envi-

ronments

Most current virtual environment systems provide a rudimentary form of
customization of the virtual environment, in that the participant can pick up
and move objects in the environment. This ability can be provided at little
cost to the system designer since it relies on interactions that would normally
be allowed. Specifying other parts of the scene description are harder since
they involved data types that can't be mapped simply onto to object positions
and interactions not usually provided in reality. Two examples are specifying
the ambient colour and texture of an object which can be accomplished by
the use of virtual tools within the environment, see [GB93] for examples.

Immersively constructing the geometry of the objects requires quite so-
phisticated virtual tools. A number of such systems exist. As examples; 3DM
[BDHO92] provides a sphere creation function that allows simple objects to

4.7. CONCLUSIONS 81

be sculpted , Deering [Dee92] describes a virtual lathe demonstration appli-
cation, and tools to create and manipulate surfaces have been constructed by
Usoh and Slater [USV96]. The work described in Chapter 5 does not provide
any object creation tools, though they would completment the system well,
though as we shall see it provides a simple way to build the interfaces to such
tools as would be needed.

To program behaviours and interactions of the virtual environment im-
mersively would require a system that was the union of the two types of
visual language from the previous section. It would be a visual language
within a virtual environment to describe the virtual environment, that could
interactivelymodify the appearance and behaviour of the virtual environment
without the participant having to leave the virtual environment. dVISE from
Division [Div94a] is an example of a system that goes some way towards such
a system in that there is a menu driven interface within the virtual environ-
ment that allows editing of object properties and simple behaviours. Figure
4.12 shows an immersive menu with nine options. The centre object is the
participants' hand. The menu items are (clockwise from top left), Lighting,
Create Object, Modify Object Hierarchy, Modify Participant Characteristics,
Save to File , Delete, Colour Editing, Spline Editing, and Stop Behaviour .

Figure 4.12: DVISE immersive menu

4.7 Conclusions

This chapter has reviewed the components that make up a virtual environ-
ment and reviewed work in visual programming that will be relevant for later
discussion.

There are two techniques used in virtual environment construction: scene
description and application coding. These two are far from disjoint, but ge-
ometry and object properties are most easily speci�ed in a specially designed

82 CHAPTER 4. PROGRAMMING INTERACTIONS

language, whereas behaviour and simulation are usually coded in a program-
ming language. The two can be linked together through an event mechanism
that augments the scene description language with names of functions to call
in response to events occuring.

Several paradigms of visual programming have also been reviewed with
particular focus on data
ow languages and systems that extend the metaphors
of visual programming to three dimensions.

In order to describe immersive virtual environments a visual programming
language should support the types of service provided by standard toolkits
and again there was a separation between two possible levels of description:
immersive scene description and immersive application coding of behaviours.

The next chapter will present a virtual environment within which it is
possible to edit the behaviour and structure of the virtual environment ob-
jects whilst immersed inside the virtual environment. This is done through
a 3D data
ow description of object behaviour within the same environment
as the objects it describes. The full range of services usually provided by
a virtual environment toolkit are provided, and the results of editting the
data
ow can be seen without leaving to re-read or re-compile. In particular
the virtual environment will allow interactions of the participant with the
virtual environment to be speci�ed allowing us to for�l needs for immersive
interaction described in Chapter 3. Since the behaviour speci�cation of ob-
jects and the objects themselves are presented in the same environment the
environment acts as it's own visualization of program execution and program
data which leads to tight debugging loop for new applications.

Chapter 5

Virtual Environment Dialogue

Architecture

As described in Chapter 4, most virtual environment systems are statically
constructed through con�guration �les and application code. This de�nes a
�xed interaction metaphor and style for the duration of the experience.

There is no need for this interaction to be of a �xed form and this chapter
describes a system that allows the participant to manipulate the dialogue
structure that connects the input devices and tools that exist inside the
virtual environment. In accordance with results from Chapters 2 and 3 this
system does not impose constraints on the interaction metaphors allowed.

Essentially the virtual environment dialogue architecture (VEDA) system
is a hybrid visual programming language and object hierarchy. The
ow of
data, from input devices through �lters to object behaviours, has a visual
representation that can be manipulated while inside the environment to have
immediate e�ects on the environment. The elements of the data
ow provide
the functionality of the environment and are derived from consideration of
the programming toolkits and environment description formats described in
Chapter 4, as well as the tasks and modi�cations required by the work in
Chapters 2 and 3.

Section 5.1 gives an overview of the abstract model used to describe an
environment. The motivation for the design of VEDA is summarized in
Section 5.2. The data
ow model is described in Section 5.3 and the basic
elements of the data
ow are more fully explained in Section 5.4. The stan-
dard set of functions used in the data
ow are described in 5.5 and Section
5.6 then gives examples of how these functions can be composed to produce
higher level composites. A standard environment within which editing usu-
ally takes place is presented in Section 5.7 and �nally Section 5.8 describes
the implementation of VEDA.

83

84 CHAPTER 5. VEDA

Devices

Polhemus

Buttons

Polhemus

Interface Virtual Tools

Move

Select

Grab

Environment

Objects

Figure 5.1: Components of the model

5.1 Overview of Abstract Model

By a dialogue architecture we mean the rules that determine the causal rela-
tionships consequent on gestures made by the participant in a virtual envi-
ronment. The components of the dialogue architecture are shown in Figure
5.1. The �rst layer consists of a set of devices that return information about
the position and state of the participant's body. Typical devices include Pol-
hemus trackers that can return information about the position of a part of the
participant's body and buttons that the participant can press. The virtual
tool layer consists of a set of functions that a�ect the parameters of the envi-
ronment objects or the environment as a whole. Virtual tool functions can,
for example, manipulate object properties such as colour, position, veloc-
ity, sound and behaviour, and global environment properties such as gravity,
scale and time. Each tool function requires a number of data elements as
input in order to specify and perform it's task. For example a colour function
would need to know an object to apply colour to and the colour to apply to
it.

Mapping data returned by the devices onto the virtual tool function in-
puts is the task of the virtual environment interface. This contains sets of
functions that process the device data streams or generate new streams that
report events that occur within the virtual environment. Functions take in-
put streams as do the virtual tools, but they generate one or more output
streams as well. For example a �lter that performs a logical and function
would take two integer input streams, and generate a single output integer
stream that was their logical and.

Within such an abstract structure the
y in the direction of gazemetaphor

5.1. OVERVIEW OF ABSTRACT MODEL 85

Button

Polhemus Scale Object
Move

Constant

Head

Middle

Participant

Figure 5.2: De�nition of the
y in the direction of gaze metaphor

(x3.1.2) could be de�ned as in Figure 5.2. The components of this diagram
are:

� The move tool function alters the position of an object in the environ-
ment. It takes three values as input: �rstly a position value from which
it extracts a direction vector to move along, secondly the identity of
an object to move, and thirdly an enable node that activates the move
function.

� The head polhemus device function returns the position of the partic-
ipant's head in the virtual environment. This includes information
about the direction the participant is looking.

� The middle button device function returns the state of one of the but-
tons on the 3D mouse that the participant is holding.

� The constant device function represents a virtual device, a slider for
example, which generates
oating point real values.

� The scale �lter function scales a position value.

� The participant object is a component of the virtual environment that
represents the participant themselves.

The lines represent the data stream connections that have been made.
The data streams are strictly one-way and
ow from left to right in the
�gure. The head polhemus device periodically generates the position of the
head which is passed to the scale function. This scales the position by a
constant value and passes this to the move function. The move function
knows the identity of an object to move, but does not do so until the middle
button function passes it a true value.

The VEDA system described in this chapter provides a representation of
this dialogue architecture and allows the connections to be altered and new

86 CHAPTER 5. VEDA

functions and objects to be placed in the dialogue to re-con�gure the virtual
environment.

5.2 Motivation

The abstract model is a data
ow model and the obvious and most com-
mon representation is of a graph with nodes representing functions and arcs
representing data stream connections.

The foremost reason for using an immersive representation of this dia-
logue was that editing could take place within the VE and not require the
participant to repeatedly enter and leave the environment when making mod-
i�cations. However our discussion of IVE systems in Chapter 3 highlights
some features of an immersive 3D presentation that be of intrinsic value to
the editing paradigm.

Firstly the immersive 3D workspace gives a larger working volume than a
desktop one. Indeed since we will be editing the dialogue within the described
VE the working volume is the size of the presented VE. We can also make
use of any of the interaction techniques presented in Chapter 3 that support
the sense of presence within the VE. In particular since many of the tasks
involved in designing virtual environments are inherently three-dimensional,
they may be best performed within a virtual environment. De�ning full body
gestures is a particular example of a task that would be di�cult to perform
outside an IVE, but even positioning and scaling of objects are two tasks
that should bene�t from naturalistic immersive performance.

Secondly the 3D arc and node display is a direct extension of typical 2D
data
ow representations which have been successful in many application
areas [Hil92], and there is evidence to show that a 3D node and arc diagram
may o�er substantial bene�ts to comprehension of the dialog structure over
the 2D diagram approach[WF94]. Within a 3D VE there are several new
presentation capabilities available such as icons with 3D geometry, 3D ani-
mation and directional sound cues, that may help to overcome the naming
problem that occurs when using many iconic desktop environments.

The choice of combining the VE with its own dialogue architecture gives
several practical bene�ts to the editing process including:

� No loss of presence in the VE when editing.

� No loss of state in the VE. This avoids the problem that if the pro-
grammer exits and restarts the simulation, to test their modi�cation
may involve navigating and interacting with objects to regain the state
they were in before.

5.2. MOTIVATION 87

Figure 5.3: Immersive representation of the virtual treadmill metaphor rec-
ognizer

� No inconvenience of having to relate virtual objects to their database
names.

� No loss of place in the VE. Re-entering the VE may mean that the
participant has to re-orient themselves to the application environment.
This complements the applications loss of state in that this is the par-
ticipant's loss of state.

From a design point of view there might be another more subtle bene�t
to immersively editing behaviour in that since the participant has a sense of
presence within the environment they are designing for, it may be the case
that any techniques or design decisions that are e�ected would be more \ap-
propriate". Essentially one would hope that since the participant is present
within the VE anything they would conceive of designing or altering would
be consistent with the VE's overall style.

An example of the immersive representation is shown in Figure 5.3. The
components of this Figure are explained in Section 5.5.4, but it implements
the Virtual Treadmill described in Section 3.7.

With such a visual representation we have created a programming lan-
guage that has aspects of many of the types of visual languages described in

88 CHAPTER 5. VEDA

Chapter 4. The underlying architecture is based on a data
ow paradigm and
the immersive representation is a straightforward representation of this. It
falls into the class of visual programming languages (x4.3.4), since the VEDA
system is for actually programming, but since the environment within which
the programming is performed is an elaboration of the actual environment
it describes, it is also a visual environment for the visualization of program
execution (x4.3.1). There are some elements of visual coaching (x4.3.2), since
some aspects of the environment are demonstrated, rather than being ab-
stractly de�ned. Gestures and animations are the main example of this.

5.3 Basic Data Flow Model

The basic building blocks of the behaviours are function objects that denote
a function that processes streams of data. As mentioned before these fall into
three categories depending on the combination of input and output streams
that they process:

� Devices that return information about the participant, for example
3D positions of body parts and button states, and initiate streams of
data. These data streams contain individual samples from the sensing
devices, and are updated with new data at the sampling rate of the
device.

� Filters that process data samples on one or more incoming streams
and then generate new data that is propagated to the output streams.

� Tools that take input streams and act upon the objects of the VE.
For example, one of the input streams to a colour function (x5.5.5) is
a
oating point value for the red component.

The function objects process streams of data, and each function object
is associated with two sets of data objects, one of which maybe be empty.
Data objects come in two
avours: input and output. Input data objects are
holders for the data received from data streams and output data objects are
the holders for outgoing data. A function object may have several input and
output objects and when activated the function will use the current values in
its input objects to generate output values that are then sent to the object
objects 1. These output objects are usually, but not necessarily, connected to

1In fact the input objects only represent the public interface to the object, in the
implementation there is the provision for functions to have private state as well.

5.3. BASIC DATA FLOW MODEL 89

a number of input objects. These connections in fact form the data streams
of the data
ow model.

Data objects come in several basic types:

� integers

�
oating point real numbers

� 3D transformations, 4 by 4 matrices of
oating point real numbers

� object identity, and sets of object identities

� gesture patterns (x5.5.4)

� animation paths (x5.5.5)

There is no restriction on the number or type of data objects a function
object could be designed, apart from considerations of the legibility and
utility of the corresponding structure.

The association of function objects with data objects and their ordering
is implied from the object hierarchy of the objects. Each function object has
two object sets as sub-objects, each set containing zero or more data objects.
The �rst set is the input objects, second the set is the output objects. See
Figure 5.4.

function

data

data

data

Input objects

Output objects

Figure 5.4: Function object with two input data objects and one output data
object

The immersive representation of a and �lter function which has such a
hierarchy is shown in Figure 5.5. The and �lter function is represented by a
icon that depicts it's role. The data objects are represented by rings, with
the number of sides depicting type and colour indicating their whether they

90 CHAPTER 5. VEDA

are input or output objects. There are no constraints on the juxtaposition of
these objects in the environment, though usually they are clustered in two
groups below the function they are associated with.

Figure 5.5: Immersive representation of an and �lter function

Each output object maintains a list of destinations to which to send its
values. Output data objects can send data to multiple destinations but input
objects usually receive data from only one output object2.

The
ow of data through the connection network proceeds in three stages:

� Data is copied from output objects to input objects according to the
output object's connection list.

� Once data is received at an input object, a decision is made, depend-
ing on the function of which it is a sub-object, of whether to call the
function.

� If the function is called, it processes the input and puts the data into
the output objects.

The
ow of data is initiated by data propagating out from the device
functions. The device functions simply place relevant external data onto
their output objects.

2One case where multiple inputs are useful is when a functions can be �red asyn-
chronously by two di�erent events in the environment.

5.4. ENVIRONMENT OBJECTS 91

The �ring decision depends on the semantics of the function that would
be evaluated. For example, in the
y navigation metaphor, illustrated in
Figure 5.2, only data being received at the enable input object (of integer
type) causes the function to activate. This mechanism is used to improve
performance and keep down the amount of data passing as examples in the
following sections will demonstrate.

A major decision about the data
ow model has been made in choosing
this three stage data
ow approach. This is that
ow of data is data-driven,
i.e. it is initiated by updates from external devices. An alternative archi-
tecture would be a demand-driven
ow of data, where tool functions request
data from their input objects in order to calculate their values. These re-
quests propagate backwards, in the sense we have described, until all relevant
data has been accumulated in order to calculate the function. In particular
when the request reaches a device function the device is polled to �nd its
current state. In this model, data
ow is initiated by certain tool functions
being activated periodically, usually on a per frame basis.

The advantages of this approach is that if the time to do the back propa-
gation is known, values of model parameters can be obtained just in time for
the display cycle of the environment and are thus as up to date as possible
for rendering purposes.

The disadvantages are that polling the devices can introduce a source of
lag, and that functions may be evaluated more than one per display cycle
in order to obtain the most up to date value. Other complications for this
method arise from the facts that the update rates for display may vary, as
might the device data reporting rate3.

The data-driven method was chosen primarily because the low level device
polling is performed by a separate actor process which does not support
direct polling from other actors (x5.8). However even if this restriction were
removed, calculating the propagation time would be complicated by the fact
the data
ow structure can be changed interactively.

5.4 Environment Objects

The objects that appear in the environment come in three classes. The �rst
two, data and function objects have been described and subsequent sections
will outline in more detail the available functions and their representations.
The third class of objects are meta objects. Meta objects serve to group to-
gether a set of objects, and to encapsulate them inside a higher level interface.

3Since the base operating system is a Unix, guaranteeing timing constraints is prob-
lematical.

92 CHAPTER 5. VEDA

A meta object has three sub-objects:

� Components Objects, a (possibly empty) set of function or meta ob-
jects. The components are elements of the environments behaviour and
dynamics that are semantically related to the meta object's role within
the environment. Thus an animated object might have as it's compo-
nents the animation, �ltering and triggering functions that generated
that animation. This is not necessarily the case but provides a way of
enforcing a structure and partitioning onto an otherwise complicated
data
ow diagram.

� Interface Objects, a (possibly empty) set of data objects that can
serve as a higher level interface to the collective behaviour of the meta
object's component objects. This mechanism allows us to create a meta
object that appears to act like a function object, in that it has input and
output objects, whereas it in fact serves as an encapsulation of several
other functions. The interface data objects can be considered as the
public connections for data streams. Data objects of the component
objects whose data stream connections would be the same over all
instances of the meta object are considered private and there is no
need to place these in the interface.

� Identity Object, an output data object that references the object and
serves to identify the object to any function that would operate upon
it.

A typical structure is shown in Figure 5.6. The interface of a meta object
is an arbitrary, possibly empty, subset of the input and output objects of any
of its component objects. The main use of meta objects is to encapsulate
several other objects and provide a higher level interface to their combined
behaviour.

The possible nesting of meta objects within other meta objects lets us
build an object hierarchy, and construct complex objects easily. Section
5.5.7 will describe tools for hiding and revealing part of the object hierarchy
and Section 5.5.8 will describe the tools for manipulating and building the
object hierarchies. Brie
y, any part of an object hierarchy can be copied and
deleted, and parts of the hierarchy can be hidden under certain conditions
so that irrelevant detail does not clutter the environment.

In a typical application the environment will consist of a number of top
level root meta objects. Some of these meta objects will be static objects with
no behaviour and thus their component hierarchies will be empty, others will
be active and have behaviours described by the objects in their component

5.4. ENVIRONMENT OBJECTS 93

meta

function

function

data

data

data

Component Objects

Interface Objects

Identity Objects

Figure 5.6: Meta object with two component objects, two interface objects
and an identity object

hierarchies. In the default state where the application is being run and none
of the interaction structure is shown, only the representations top level meta
objects will be visible. For example in Chapter 6 we shall see a top level ball
object that encapsulates the bouncing and colliding behaviours that apply
to the ball. In the default state the ball just carries out its behaviour and
none of the functions that create this behaviour are visible. When the ball is
being edited these functions are visible within the environment and can be
manipulated.

Meta objects can have an arbitrary subset of the component objects'
input or output data objects as an interface. This interface is usually empty
for top level objects, but otherwise meta objects are a useful mechanism
to encapsulate a large amount of detail from the dialogue within a single
component.

Two example immersive representations of meta objects are shown in
Figures 5.7 and 5.8.

In both examples, the small sphere below the meta objects represent the
identity object4. The object in Figure 5.7 is an environment object that does
not have any components and would simply be part of the background of the
environment. Figure 5.8 shows a virtual button object that has a collide �lter

4These identity objects can also be hidden and aren't usually visible (x5.5.7).

94 CHAPTER 5. VEDA

Figure 5.7: Immersive representation of a meta object with an identity object,
but no components or interface

Figure 5.8: Immersive representation of a meta object with one component
object and an identity object

5.5. STANDARD COMPONENTS 95

function object as a component. The operation of the collide �lter function
object is described in Section 5.5.5, but the overall function of the button
object would be to generate an integer stream that indicated when it was
hitting another object.

5.5 Standard Components

The set of function objects and meta objects provided as a basis for construct-
ing virtual environment has been designed at a certain level of abstraction
from which it is simple to construct virtual environment applications. It is
derived from considering the class of functions and properties provided by the
standard programming toolkits and scene description languages described in
Chapter 4.

The set of components is not exhaustive, for large applications it is in-
evitable that new functions have to be coded in order to create that environ-
ment. A complete list of the current functions supported by VEDA is given
in Appendix A.

The motivating idea is that a large class of environments should be simple
to build from the standard set of objects, and for more complex environments
a prototype and framework can be built before application speci�c functions
are coded.

The following sections describe the standard set of functions, meta objects
hierarchies and design alternatives that were considered.

5.5.1 Participant Sensors

The �rst set of functions are the device functions that sense the participant's
body posture. The VEDA system is currently built on a Provision100 VPX
(x5.8), with two Polhemus trackers, one reporting hand position and one
reporting head position. The hand tracker is embedded with a pistol grip
that has �ve buttons see Figure 3.3.

A lot of detail is hidden within these functions. Determining the actual
position of the head and hand is a complex procedure that relies on knowing
several parameters, including: actual position of the tracker sources, the real
position of the head and hand relative to the tracker sources and the virtual
position of the tracker sources in the virtual environment. For example the
trackers may be position 48 inches o� the ground, so the reported position
of the head should be the relative transform from the tracker receiver to its
source transformed vertically 48 inches. Movement around the virtual en-
vironment for a limited distance is possible with just these transformations,

96 CHAPTER 5. VEDA

but for larger distances, a navigation metaphor must be used. The naviga-
tion metaphor e�ectively moves the virtual base position of the trackers in
the environment. The reported head and hand positions are then the con-
catenation of these transformations and are reported through data objects
of type 3D transformation. The decision to use complete transformations,
rather than report three position and three rotation values separately, was
made to reduce the number of objects in the data
ow, the amount of data
passing that would have to take place, and the amount of clutter that would
result from all the parallel connections. Functions that take transformation
streams as input often extract relevant information from the matrix, such as
a point or X-axis vector, as a �rst step.

For convenience there is a third position device that reports the relative
position of the hand from the head, in the head's local coordinate system.
This will form the input for the gesture �lter functions described in Section
5.5.4.

The state of each button is reported by separate device functions with
single outputs, rather than a single device function with �ve outputs. This
design was used because other platforms are likely to have di�erent num-
bers of buttons on the controller. Indeed the original platform for VEDA, a
Provision 200 system, had only 4 buttons 5.8.

A further device function is included amongst the participant sensor even
though it does not represent any state of the participant. This is a time device
that periodically updates a single integer stream with the current time. This
is useful to drive certain �lter and tool functions that rely on time varying
values.

Figure 5.9 shows the representations of the device functions.

5.5.2 Standard Environment Functions

The basic environment can be edited using �ve tool functions, select, pick,
copy, delete and connect.

The �rst four of these functions are standard functions that one would
expect to �nd in any virtual environment editing system. The last, connect,
is the means by which the data
ow streams are connected within the envi-
ronment. The immersive representations of the �rst four functions are shown
in Figure 5.10.

Select The select tool function allows multiple objects to be selected so
that further operations may be applied to them. This operates much like
selection in 2D interfaces: when the selection button is pressed the object

5.5. STANDARD COMPONENTS 97

Figure 5.9: Immersive representations of the sensor devices

Figure 5.10: Immersive representations of the sensor devices

98 CHAPTER 5. VEDA

that is colliding with the selection device (usually the hand) is added to the
selection set if not already in the set, or removed if it is already a member.

The select tool function thus takes 2 inputs: object to select, and integer
stream that �res it. It has one output, the identity of an object set that
holds the currently selected objects. Usually the object input stream would
receive the object currently colliding with the hand, see Figure 5.11, though
this is not necessarily the case. The selection set is indicated by each of it's
objects being highlighted red until they are de-selected.

Hand

Button
Trigger

Select

Objects
Selected

Collide

Figure 5.11: Abstract representation of the standard select tool function
con�guration

Many of the functions that act upon objects use the output object set
of the select tool function in as a source of input to indicate the objects to
operate upon.

Pick The pick tool function provides a way of moving a set of objects by
enforcing a temporary constraint that the objects be attached to the hand.
The pick tool function takes an object identity stream input and a integer
input stream, and moves the objects in the set while the integer input stream
is true.

Two obvious ways object input stream could be connected are:

� To the output of the selection set

� To the collision with the hand object

Figure 5.12 shows the two con�gurations by indicating with the dotted
lines the two manners in which the object to pick can be connected. The
�rst con�guration, indicated by the lower dotted line, allows the whole set of
selected objects to be picked simultaneously. The second, indicated by the
upper doted line means that the hand must be colliding with the pick object.

As a metaphor for picking the �rst method has the advantage that mul-
tiple objects can be moved at once, but the disadvantage that these objects
might not be local to the hand. The second method has the advantage that

5.5. STANDARD COMPONENTS 99

Select

Collide

Trigger
Button

Hand

Pick

Figure 5.12: Abstract representation of the two options for pick tool function
con�guration

is it more intuitive in that the object being picked is touching the hand, but
with some navigation metaphors where the participant must point with their
hand to indicate direction, the object might obstruct the view.

A choice between these two con�gurations can be made and e�ected inside
the environment.

Copy The copy tool function copies a whole object and it's sub-hierarchy.
A choice of input con�guration, similar to that for the pick tool function tool,
has to be made, though it makes sense to choose a consistent metaphor. The
copy tool function takes two inputs, object identity and integer and copies
the object hierarchy, giving the new objects a positional o�set, when the
integer stream becomes true.

The copy tool function has to cope with object hierarchies and connec-
tions to and from the sub-objects. This is done in two stages, �rstly the ob-
jects themselves are copied and secondly the connections are copied. When
a connection is copied there are two cases to consider:

� Both end points are objects which have been copied. In this case the
connection is made between the two new copies of the original end-
points.

� Only one end point is within the set of copied objects. In this case the
connection is made between the copied object, and the un-copied end
point of the original connection.

This means that the copied objects mimic the original objects in their
function, and relevant inputs will have to be reconnected. However the al-
ternative, where no external connections are copied, could mean that a large
number of connections have to be remade.

100 CHAPTER 5. VEDA

Delete The delete tool function deletes whole object hierarchies. In doing
so it breaks any connections that originate at or are destined for any of the
objects being deleted. It too takes two inputs, object identity and integer.

Connect and Disconnect In the current implementation these are not
separate functions, but part of the pick implementation. Thus the connect
and disconnect functions are not implemented individually within the di-
alogue architecture but their behaviour is hidden within and activated by
using the pick tool function.

The pick tool function provides a number of tubes inside the virtual envi-
ronment that can be used to connect data objects together. An unconnected
tube can be picked at either end, and stretched with the other end remaining
�xed. If the end of the tube comes within a snap distance of one or more
data object one of three things will happen:

� If the other end of the tube is unconnected then the end being dragged
snaps to the nearest data object.

� If the other end of the tube is connected, the tube snaps to the nearest
data object of the same type. The tube will only snap between an
input/output pairs of data objects.

� If neither of the above holds then the tube remains attached to the pick
object.

When the tube lies between two data objects then a connection is made
and the data stream initiated.

Disconnecting a tube from a data object involves either dragging it away
from the data object it has just snapped to, or picking up the tube again.
Picking up a tube along it's length brings the closest end to the pick object
if the pick object's position is greater than the snap distance away from the
data object, otherwise it remains attached.

This technique allows the data
ow network to be constructed rapidly.
The tubes provide a visualization of the data
ow, and in combination with
the level of detail tools to be described in Section 5.5.7 they provide a quick
way of showing how an object is connected. Figure 5.13 shows the same
and �lter function as that of Figure 5.5, except that the input and output
connections are shown. Both inputs have a single connection, and the output
is connected to three separate objects.

5.5. STANDARD COMPONENTS 101

Figure 5.13: Immersive representation of the and �lter function with connec-
tions illustrated by tube objects

5.5.3 Simple Filters

A set of simple functions provides integer stream �ltering in order to con-
struct more general rules about �ring further events in the data
ow. These
are the and, not, equal, then, double click and delay �lter functions.

The and, not and equals �lters are simple functions that operate on integer
streams and are analogous to logic gates. The then �lter function is more
complicated in that it takes two integer inputs and outputs success when
the �rst goes to true and then the second after a set amount of time. This
time is altered by a
oating point real input. Double click is similar, but it
takes only a single integer input stream, so it recognizes when a stream goes
to true twice within the indicated period. The delay �lter function simply
delays an integer stream, by a time period set by a
oating point real input
value.

5.5.4 Gesture Recognition

As described in Section 3.2.3, many virtual environment systems provide
gesture recognition, and this is provided within the dialogue architecture
through types of node that represent train-able functions.

The nodes have to recognize two basic forms of gesture:

� Static gestures or postures. Here the node has to simply register when

102 CHAPTER 5. VEDA

a set of inputs stream take certain values.

� Dynamic gestures where the node has to recognize a pattern of data
within a set of streams.

Of these two types of gesture, static ones are easy to report since they
rely on a set of data elements falling within the ranges de�ned by a template.
Such templates are easily demonstrated by making examples of the gesture.

Dynamic gesture are more complicated and Section 3.2.2 described meth-
ods of recognizing such gestures. Two methods of recognizing dynamic ges-
tures are provided with VEDA: neural net based and feature based.

Neural Net Based Recognition The base neural nets implementation
was simply incorporated from the work described in Section 3.7. A single
neural net �lter function accepts position values and returns a simple integer
success value.

The neural nets can not be trained on-line so using one inside an environ-
ment requires a separate session where data is collected. The neural net �lter
function serves both the data collection and subsequent recognition services
and the neural net is a data structure local to the function rather than a
value that can be passed around the data
ow network.

The neural net �lter function object takes three inputs: a position stream
from which the gesture is to be recognized, an integer stream that indicates
when the gesture is being performed to provide training data to the neural
net and an integer stream that stops the gathering of training data.

An initial true value on the �rst integer stream starts the recording of
training data to an external record. Data recording is terminated by a true
value on the second integer stream. Typically these might be temporarily
connected to two buttons on the 3D mouse.

Once a neural net has been trained the function automatically starts
recognizing the gesture from the values received on the position input stream
and reporting on the output stream. The success and stop inputs are no
longer required once recognition has begun and would be disconnected.

An abstract representation con�guration of objects to recognize the vir-
tual treadmill gesture is shown in Figure 5.14. The immersive representation
of the gesture was shown in Figure 5.3.

Feature Based Recognition The approach to feature based recognition
is similar to that proposed by Watson [Wat93a], in that we extract simple
features from each individual stream and match them against the set of
features that compose a gesture.

5.5. STANDARD COMPONENTS 103

Polhemus

Participant

Object
MoveHead

Gesture
Recognize

(inputs used for
 training only)

Train

Reset

Figure 5.14: Abstract de�nition of the virtual treadmill metaphor recognizer

The features extracted are maxima, minima, start and end of stationary
periods and start and end of gesture. A gesture is decomposed into feature
sets for each of the of X,Y and Z axes of the position stream. Each feature
set contains a list of features and the time ranges these should be recognized
within, measured from the time of recognition of the start feature.

Recognition of the gesture is the successful sequential recognition of each
of the features in each of the feature sets. Recognition for each of the axes
progresses independently, though the start and endpoints should be reached
at the same time and if any single axis recognizer fails to recognize it's next
feature in the time limit required, all the recognizers restart. This avoids
synchronization problems which might occur when an individual stream rec-
ognizer recognizes a repeated initial subsequence of the features.

A typical gesture sequence is given in Table 5.1. The gesture is that of
making an alpha sign in front of the face.

Unlike neural net recognition, feature based recognition is provided by
two separate functions. The �rst is a gesture training �lter function, that
has three input streams: a position stream from which the gesture is to be
trained, an integer stream that indicates when the gesture starts and stops
an integer stream to clear and initialize the gesture.

The �rst integer stream is required to become true when the gesture starts
and remain true until it �nishes. For each demonstration the set of features
is extracted and merged into the current feature set using a modi�ed longest
common subsequence algorithm . More than one demonstration is required in
order to set ranges on the times within which the features can be recognized.

The gesture training �lter function outputs a description of the gesture
which is passed to a gesture recognition �lter function. This has two input
streams: a position stream from which the gesture is to be recognized and a

104 CHAPTER 5. VEDA

X axis features
type value (in) range (in) time range (s/20)

�rst start 2.3 0.8 0 0
second end-
at 2.2 0.8 10 14
third min -9.0 1.5 26 32
fourth end 3.7 0.3 24 27

Y axis features
type value (in) range (in) time range (s/20)

�rst start 1.5 1.1 0 0
second min -10.0 1.3 29 35
third max -0.9 0.6 18 24
fourth end -5.9 0.8 11 16

Z axis features
type value (in) range (in) time range (s/20)

�rst start -19.5 0.9 0 0
second end-
at -18.3 1.0 47 54
third end -20.8 0.5 15 16

Table 5.1: Typical feature sequence of a gesture

gesture to recognize.

It performs continuous recognition and reports this in a single integer
output stream. By using both nodes simultaneously it is possible to see
whether or not enough examples have been given for recognition to be robust.

The di�erence in approach to the gesture training and recognition provided
for neural net and feature based recognition is due to two factors: Firstly
there is no need for neural nets to be passed around since this would only
occur once (when the net was trained since there is no interactive training)
and would be an expensive copying operation. Secondly, having the feature
based gestures as a data type allows the possibility of using the gesture as an
input type to a function that demonstrates the gesture so that someone can
watch and learn how to perform the gesture. This isn't possible for neural
nets since there is no way of decoding what the neural net recognizes.

Neural net and feature based recognition are suitable for di�erent classes
of gesture. Feature based is useful for gestures that have a path like de-
scription, such as iconic gestures, whereas neural nets are useful when the
gesture is ill-de�ned and might vary from person to person. Neural nets can
also provide continuous recognition in that they report success for the dura-

5.5. STANDARD COMPONENTS 105

tion of the gesture, whereas feature based recognizers generate output when
the gesture has been completed, and rely on their being an end-point to the
gesture.

Static postures are easily supported by using a feature based gesture
where the start and end points are the only two feature and they are coinci-
dent.

5.5.5 Object Properties

Various properties of the meta objects can be a�ected by functions within the
environment. These property tool functions require the use of the identity
objects as input to indicate the object to which they should apply and the
are generally retrieved from the individual identity nodes of meta objects, or
from �lter functions that generate object identity outputs such as select or
collide.

The property �lter functions include collisions, constraints, dynamics,
animation, scale and colour.

Collisions The �rst type of property is that of colliding with another ob-
ject. There are two collide tool functions:

� Speci�c Collide. This takes two inputs, the identities of two meta
objects, and generates a true value on its single output stream whenever
the geometry of these two objects collide.

� General Collide. This takes a single identity input, and has two out-
puts, an integer value that it true when it is colliding and the identity
of the object it is colliding with.

These two functions allow a lot of
exibility in de�ning reactions to col-
lisions. The speci�c collide tool function could of course be implemented
through the use of the general collide function and a node that test equality
of the output object with the second object. However, the underlying col-
lision detection algorithm (x5.8) is much more e�cient if both objects are
speci�ed since it no longer has to test for possible collisions with every other
meta object in the scene.

The virtual button of Figure 5.8 is implemented with a speci�c collide
and it reacts only by being touched by the participant's hand.

Constraints Objects can be constrained together in three ways within
VEDA:

106 CHAPTER 5. VEDA

� To Constraint. This constrains a slave object to follow a control ob-
ject. When the control object is moved the slave is moved to maintain
their relative position. However the slave's moving does not a�ect the
control's position. The to constraint tool function takes two object
identities as input: the �rst is the identity of the control object and
the second is the identity of the slave object.

� Along Constraint. The along constraint constrains an object's posi-
tion to lie along a 3D vector. The along constraint tool function takes
two object identities as input: the �rst is that of an object from which
the 3D vector's direction is taken, and the second is that of the object
to constrain.

� Between Constraint. A between constraint constrains an object to
lie between the two planes orthogonal and coincident with either ends
of a vector. This is done by constraining the object's position so that
it's projection on to the direction of vector lies between the endpoints
of the vector. Again, the �rst input is the identity of an object from
which the direction is taken, and the second is the identity of an object
to constrain. This function also has a single
oating point real output
that gives a value between 0.0 and 1.0. This value corresponds to the
relative position of the projection of the position of the constrained
object between the ends of the vector.

Combinations of these three types of constraint allow quite a lot of
ex-
ibility in de�ning more general constraints. For example two objects can
be linked together by using two to constraints. A constraint handler auto-
matically resolves circularity in the graph of constraints. Section 5.6 gives
examples of making a 1D slider and a 3D slider.

In the current implementation, no rotational constraints corresponding to
along and between have been provided, though the required functions, rotate
around and angle between would very similar to their positional counterparts.

Dynamics The object dynamics tool function controls the behaviour of an
object that moves under gravity and responds to collisions. It requires �ve
inputs: the identity of object to control, the identity of colliding objects, a

oating point real value of gravity, an integer that acts as a reset to return
object to it's original position and an integer animation time.

The function updates every time one of these values changes, and in
particular at least as often as it receives an input from the second integer
input. This is connected to a time device function that updates at a regular
interval (x5.5.1). The identity of the object that the controlled object is

5.5. STANDARD COMPONENTS 107

colliding with would usually come from a general collide tool function, so
that the object could respond to collisions with any other object. The gravity
value could be changed by connecting a virtual slider (x5.6), but once a
suitable value was set this would probably be disconnected. First integer
input returns the object to it's initial position when it becomes true.

Animation Animation of objects is provided by a pair of functions that
operate in a complementary manner. The �rst is the path create tool, which
creates a path from a sequence of input positions. The second is the path
follow tool which produces position values which interpolate an input path
at a chosen velocity.

The path create �lter function takes 3 inputs: a position stream, a integer
as a key point indicator and an integer as reset.

It has a single path output data object. It's behaviour is to add the
input position to the output path whenever the �rst integer input is true.
The second integer input simply removes the current path from the output
stream.

It is complemented by the path follow tool function which takes 3 inputs:
a path to interpolate, a
oating point real that is speed of interpolation, an
integer animation time and the identity of object to control.

The speed of interpolation is variable and allows control of how long it
takes to complete the path. The animation time provides the necessary �ring
input to drive the animation at a constant rate.

Scale The basic pick tool function provides a way to position and arrange
the objects inside the environment. To allow more general editing of the VE,
a scale tool function was implemented that allows a meta object's geometry
to be scaled independently along three axes. The inputs are three
oating
point real streams to use as scaling values, and the identity of an object to
apply the scaling to. If the scaling is to be symmetrical about the three axes,
they can all be connected to the same source. The provision of a higher level
scale tool is presented in Section 5.6.

Colour The inclusion of a colour tool function completes the set of func-
tions needed to customize the appearance environment objects. It's use is
limited however by the fact that colour can only be applied to a geome-
try object as a whole, and not to individual geometrical elements. It takes
three
oating point real input stream that correspond to the red, green and
blue components, and the identity of the object to apply the colour to. The
provision of a higher level colour tool is presented in Section 6.3.2.

108 CHAPTER 5. VEDA

5.5.6 Position Filters

This collection of �lters provide access to and manipulation of object posi-
tions. They might be considered object property functions, but they include
functions to manipulate position data streams as well as set object positions.
The �lter functions are: get position, set position, get relative position, set
relative position, invert position and stretch position.

The behaviour of each of these is quite straightforward. The get position
takes an object identity as input, and generates an output stream with the
object's position, whilst the set position takes two input streams, one the
identity of a meta object and the second the position to move it to. Get
relative position takes two position input streams, and generates the o�set
position from the �rst to the second. Set relative position, also takes two
position input streams, and generates the concatenated position. Invert po-
sition simply takes an input stream and generates the inverse position on an
output stream. Finally stretch position takes two object positions and gener-
ates a position which if applied to an object would stretch it between the two
input positions. It e�ectively scales a one unit high object to the distance
between the two objects, rotates it to lie in the direction of the vector from
the �rst to the second position and then moves it to coincide with the �rst
position.

5.5.7 Level of Detail

The amount of detail present in the environment description is quite large,
so additional tool functions are used to hide parts of the object hierarchies
that are currently unimportant. For example several levels of detail in the
de�nition of a button are shown in Figure 5.15 and Figure 5.16. At the lowest
level of detail the button is just an object within the environment. The next
level up shows that it generates an output, and at the highest level we see
that it's behaviour is composed of a single collide �lter function and that it
generates an output when an object collides with the button meta object.
The dotted ellipse in Figure 5.15 indicates the detail that would normally be
hidden.

All objects can be displayed at di�erent levels of detail, with the con-
straint that function or meta objects that are not contained within a higher
level meta object can not be completely hidden. This is so impossible for
them to become irretrievable since invisible objects are uncollidable and thus
unselectable. The levels of detail for each type of object are shown in Table
5.2.

Two tool function e�ect the changes between levels, hide and reveal. Their

5.5. STANDARD COMPONENTS 109

Levels of Detail for Function Objects
Lowest .Highest

Invisible and all sub-
objects invisible

Visible and all sub-
objects visible

Visible and all sub-
objects visible at
highest level

Levels of Detail for Data Objects
Lowest . Highest

Invisible Visible

Visible and all con-
nections represented
by tubes

Levels of Detail for Meta Objects
Lowest . Medium

Invisible and all sub-
objects invisible

Visible and all sub-
objects invisible

Visible, interface ob-
jects visible and iden-
tity object visible

Medium .Highest

Visible, identity ob-
ject visible and inter-
face objects visible at
highest level

Visible, interface ob-
jects invisible, com-
ponent and identity
object visible

Visible, interface
objects invisible,
component and iden-
tity object visible at
highest level

Table 5.2: Levels of detail for each object type

110 CHAPTER 5. VEDA

MediumLow Detail

Filter
CollideCollide
Filter
Collide
Filter

High

Figure 5.15: Abstract representation of detail of the button objects

representations are shown in Figure 5.17. Each tool function takes an object
identity stream and integer stream as input. The reveal tool function in-
creases the level of detail of the objects in the input stream by one, and hide
decreases the level by one. Both functions are triggered when their integer
streams become true.

5.5.8 Hierarchy Manipulation

Constructing the object hierarchy is a process of grouping together functions
that apply to or are semantically linked to a meta object and forming them
into a sub-hierarchy of that meta object. For example the participant meta
object has all of the device functions as components.

Constructing this hierarchy is performed by two tool functions: encap-
sulate and de-encapsulate. Both tools can be used to manipulate both the
components and interface objects of a meta object.

Adding component objects simply involves selecting a set of meta and
function objects and adding into the component hierarchy of another meta
object. Removing component objects is also a simple operation that removes
an object from the component hierarchy it belongs to.

The addition and removal of interface objects is more complicated since
the data object that becomes part of the interface can not actually exist at
two places in the hierarchy. When a data object is added into the interface, a
ghost data object of the same type is created and added to the meta object's
interface object hierarchy. This ghost data object acts as a reference to the
\real" data object, and connections to it are redirected to the data object.
The ghost data object has a di�erent position to it's real object, so that the
interface objects can be grouped together with the meta object. To avoid

5.5. STANDARD COMPONENTS 111

Figure 5.16: Immersive representation of levels of detail of the button objects

ambiguity a data object and it's ghost can not be visible at the same time,
see the level of detail rules in Table 5.2.

Figure 5.18 shows the actual hierarchy of the button object described in
the Section 5.4. The dotted curve in Figure 5.18 indicates the relationship
between the button object's interface and the output data object of the collide
�lter function. The thick curve indicates an actual data
ow connection.
The connection indicates that the collide �lter function responds to collision
events of the button meta object.

Interfaces can be de�ned recursively, so the interface objects of a meta
object can be included in the interface of a higher level meta object, and
these ghost objects then form a chain and provide a mechanism by which
the input or output of a function can be represented at several levels of an
object hierarchy. Figure 5.19 gives an example of such a hierarchy. The
dotted curves represent the relationships between the two interfaces. The
data object can be accessed as an interface object at two di�erent, depending
on the level of detail of the various parts of the hierarchy.

Removing a data object from the interface involves deleting the relevant
ghost object and reforming any ghost object interface chain it was a part of.

The encapsulate and de-encapsulate tools each ful�l two quite distinct
roles, but because each of these functions are orthogonal in the e�ect they
have on the object hierarchy, but are semantically quite closely related they
are combined into one.

The visual representation of encapsulate and de-encapsulate are shown
in Figure 5.20.

112 CHAPTER 5. VEDA

Figure 5.17: Immersive representation of the hide and reveal tool functions

Identity Objects

Interface Objects

Component Objects

function
collide

Object
Button

Figure 5.18: Object hierarchy of the button meta object

5.5. STANDARD COMPONENTS 113

Identity Objects

Interface Objects

Identity Objects

Interface Objects

Component Objects

Component Objects

Figure 5.19: Object hierarchy of a meta object having nested interfaces

Figure 5.20: Immersive representation of the encapsulate and de-encapsulate
tool functions

114 CHAPTER 5. VEDA

5.6 Example Composite Objects

Several meta object hierarchies have been constructed that can be used as
basic components of new virtual environments. Virtual buttons have been
described in Section 5.4, but others include: virtual sliders, a multi meter
and a scale tool. A further example of a colour tool is given in Section 6.3.2
where its implementation was the goal of one of the evaluation exercises.

Each of these illustrates a di�erent technique for generating meta objects
with higher level behaviour, and they serve to show the
exibility inherent
in the dialogue architecture.

Virtual Slider This meta object has a single output stream in its interface
that generates
oating point real values. Its overall behaviour is to act as
the virtual equivalent of a real slider. It is a useful object since there are no
real sliders attached to the hardware system, and several functions require

oating point real values as input to control aspects of their behaviour. The
virtual slider was constructed inside the virtual environment and is composed
of the following objects: a meta object for the slider bar, a meta object for
the slider button, a constrain to tool function that constrains the button
to the bar, a constrain along tool function that constrains the button to lie
along bar and a constrain between tool function that constrains the button
to lie between the end points of the bar.

The abstract description of this is shown in Figure 5.21. The two objects
are constrained together in three ways and the constrain between tool func-
tion gives a
oating point real value between 0.0 and 1.0. This
oating point
real value is used as the output of the slider object and is placed in the inter-
face of the slider bar meta object. The functions are hidden as components
of the slider bar meta object.

The representation of the slider within the environment is shown in Figure
5.22. In this �gure the interface is shown, but the components hidden.

Multi meter The multi meter is a debugging tool that has proved useful in
the construction of application environments. It consists of two meta objects,
a meter and a dial pointer, and it has several simple behaviours, depending
on the inputs it receives. On receiving an positive integer input it
ashes
the colour of dial pointer. On receiving a
oating point real input it moves
the dial pointer relative to the meter, thus indicating the received value. On
receiving an object input it
ashes the colour of the object whose identity it
receives.

5.6. EXAMPLE COMPOSITE OBJECTS 115

Constrain

Constrain

Constrain
Between

Along

ToSlider
Bar

Slider
Button

Slider
Output

Figure 5.21: Abstract representation of the slider object

Figure 5.22: Immersive representation of the slider object

116 CHAPTER 5. VEDA

These behaviours are implemented as a single function5. The function
takes �ve inputs, the identity of the meter meta object, identity of the dial
pointer meta object and the three inputs given in the above list. The function
is part of the component sub-object of the meter, with any combination of
the input given in the above list as interface sub-objects.

Scale Tool Object The scale tool object provides a higher level interface
to the scale tool function described in Section 5.5.5. It uses the interface hier-
archy mechanism to hide most of the detail of the operation and so provides
a useful tool for editing environments.

The representation is shown in Figure 5.23. This shows a meta object
that represents the high level scale function. Attached to that is a slider
object, and the only visible data object is a single object identity input.

Figure 5.23: Immersive representation of the scale tool object

The abstract description of the dialogue occuring is shown in Figure 5.24.
The slider object is constrained to the scale meta object. The output of the
slider is connected to all three inputs of the scale tool function. The scale tool
function is then made a component of the scale tool object, and the identity
input of the scale tool function is placed in the interface of the scale tool

5This was because it was one of the �rst functions implemented since it was useful to
test other functions, but now it remains for e�ciency reasons.

5.7. STANDARD ENVIRONMENT 117

object. The shaded elements of Figure 5.24 are those objects that appear at
the usual presentation level of the scale tool object.

Slider

Scale
Tool Object

Scale

Figure 5.24: Abstract representation of the scale tool object

The scale tool object provides a symmetrical scale about all 3 axes of the
object. It can be used by attaching the identity of the object to be scaled to
the single object identity input in the interface of the scale tool object and
manipulating the slider.

5.7 Standard Environment

The previous sections have described many of the functions and meta object
provided with VEDA. All aspects of the dialogue are manipulable, but there
is a standard environment and dialogue con�guration within which develop-
ment of applications and indeed the development environment itself takes
place. This imposes a gross structure on the dialogue architecture, by pro-
viding a meta object hierarchy that hides most of the dialogue architecture.

The dialogue for an application can be separated into the standard in-
teraction techniques, such as navigation, selection, picking and the dialogue
editing functions and the application interaction techniques which are speci�c
to the application.

The objects that compose the standard interaction techniques are ar-
ranged in two hierarchies, the Participant hierarchy and the Tool box, each
of which is headed by a single meta object.

The participant hierarchy contains all the sensor device functions of the
environment. The immersive representation of the participant hierarchy was
given in Figure 5.9. The central human �gure is the root meta object of this
hierarchy.

The tool box contains all the tool functions and the dialogue that speci�es
their method of activation. The tool box and the collection of tools is shown

118 CHAPTER 5. VEDA

in Figure 5.25.

Figure 5.25: Immersive representation of the tool box and the contents

For application development the tool box contains a further object, the
object store, which contains one of each of the �lter and tool functions and
various higher level meta object tools so that they can be copied into the
environment and used as part of the dialogue. The object store is shown in
Figure 5.26. Only part of the hierarchy is shown at a high level of detail.

Some of the higher level tools, such as the scale and colour tool objects,
require the object to be present in the environment in order to use it. These
tools need to be taken from the tool box in order to use them or the tool
box needs to remain open. Any tool that has been taken from the tool box,
or in fact any object, can be placed in the tool belt. This is not actually
an object hierarchy, but a technique by which objects are constrained to
the participant so that they follow the participant around. In the standard
environment, the colour, multi meter and scale tool objects are in the tool
belt, along with a tool that creates new tubes, the path training function
and the gesture training function.

The objects that compose the application speci�c interactions are ar-
ranged in a set of hierarchies, the roots of which are the objects that will
be presented within the environment. Thus each presented object will have
associated with it parts of the dialogue that are semantically linked to that
object.

Some overlap occurs between the objects in the standard and application
interactions. A standard interaction technique, such as navigation, might
be altered for individual applications. Also applications might involve the

5.8. IMPLEMENTATION 119

Figure 5.26: Immersive representation of part of the object store hierarchy

removal of some of the standard interactions. In particular once an appli-
cation is �nished a \runnable" version might be produced that has had all
the unnecessary standard interactions removed, or at least disabled. Obvi-
ous candidates for removal or disablement are the level of detail tools and
hierarchy manipulation tools. It is possible to set up a mechanism by which
any disablement can be reversed by a knowledgeable participant through use
of a special gesture or button.

5.8 Implementation

A �rst prototype version of the dialogue architecture was built for a Division
Provision 200 running dVS version 0.2 [Div92]. This version of dVS di�ers
in many ways from version 2.0 described in Section 4.2.1, though the basic
actor model is similar [SS94]. The interaction devices used were a Virtual
Research Flight Helmet and a 3D mouse with 4 buttons both tracked by
Polhemus Isotrak devices.

A second prototype was built on a Division Provision100 VPX running
dVS 2.0.4. This also had a Virtual Research Flight Helmet and a 3D mouse
with 5 buttons, both tracked by Polhemus FasTrak devices. This machine
provides much faster graphics since it uses a Pixel Planes 4 board for the
rendering. The Provision100 is built around a 486 PC running Consensys

120 CHAPTER 5. VEDA

Database
Interface

dVS

VEDA

Tracker
Collide

Audio

Visual
Body

Events

Figure 5.27: Relationship between VEDA and dVS

4.2 and the X11 version 5 windowing system.

5.8.1 dVS Services

The dialogue architecture was constructed by modifying dVS's application
actor (x4.2.1). The process associated with this actor runs on the 80486 pro-
cessor of the Provision and was written using the VC toolkit layer provided
by dVS.

dVS provides many of the services required in the construction of VEDA.
In particular it supports a VE object database which is shared amongst all
of the actors. VEDA relies on the visual and audio actors for rendering of
this database, the services of the collide actor for basic collision detection,
and the tracker and body actors for device reporting. The relationship of
dVS, VEDA and the various actors is shown in Figure 5.27.

The operation of the visual and audio actors is transparent, VEDA can
only indirectly a�ect them by altering the scene database and re-specifying
the viewpoint from which to render. All scene database operations pass
through an interface which maps object property manipulations onto the
requisite VC library calls.

The exception to this is the manipulation of the representation of the par-
ticipant within the environment. This is provided by the body actor which
directly accesses the tracker actor and provides a body description in the
scene database. Navigation, which e�ectively moves the body representa-
tion through the scene, works by instructing the body actor to move the
base coordinate system of the trackers, which has the e�ect of altering the
reported positions of the head and the hand trackers. Since VEDA does pro-
vide navigation, it is necessary to turn o� the body actor's own navigation

5.8. IMPLEMENTATION 121

VEDA Utilities

Database Abstraction

VC Library Utilities

VEDA Data Flow Functions

Figure 5.28: Library interfaces between VEDA and dVS

functions.

The initialization of VEDA thus involves loading a scene database, (x5.8.2),
and registering certain event callbacks. The four callbacks are concerned with
head movement, hand movements, button state changes and collision events.
The arrival of these events triggers the
ow of data through the dialogue
architecture.

5.8.2 VEDA Database Layer

The standard component of the VEDA data base is the object, which encap-
sulates geometry, data and function. The database is written in an object-
orientated manner, the three basic types of object, data, function and meta,
can be considered subclasses of an abstract object class. Each contains a
dVS visual object as its representation within the environment.

At a basic level VEDA provides database wrapper functions for dVS ob-
ject property functions such as colour and scale setting, and utility functions
to provide the extra functionality that VEDA needs such as logical hierarchy
manipulation, level of detail, object creation and so on. Relevant informa-
tion from other actors is passed using an event mechanism. This means that
VEDA has little reliance on dVS being the underlying service, though some
of the VC Library auxiliary functions (such as matrix manipulation and point
to point transforms) are utilized out of convenience. The relationship of the
libraries is shown in Figure 5.28.

The VEDA meta and function objects hierarchies are represented using
trees of linked lists with, for example, a meta object having a subobject
list containing 3 elements pointing to other subobject lists the �rst of which
is the list of component, the second the interface objects and the third a
unit list containing the identity data object. The data
ow connections
are represented in the data objects as a list of pointers to destination data

122 CHAPTER 5. VEDA

objects. Memorymanagement for these structures is done locally with VEDA
providing lists of unreferenced objects that can be re-used.

5.8.3 Data Flow Function Implementation

Each function object represents a C function which is triggered after data
has been copied into one of its input subobjects. The function is called and
passed the root of the data object hierarchy. Some functions are simply the
data
ow versions of certain VEDA utility functions such as copy and delete.
The data object hierarchy will contain a single object, and this will contain
the identities of the objects to copy. Others are the data
ow equivalents of
the database wrapper functions and the object hierarchy will be contain the
identity of a VEDA object to operate on, and the corresponding property
values to apply.

Other functions provide more complicated behaviour that is not provided
or is limited in the underlying database. These include animation, dynamics,
constraints and gesture recognition.

Animation is one aspect of the scene description language that dVS pro-
vides (x4.1). However it would interface badly with the VEDA system where
paths can be interactively de�ned, since a MAZ spline path description is
statically de�ned in a external �le. Within VEDA it is possible to drive the
animation based on arbitrary conditions since each update along the path is
governed by a speed and is triggered by a data
ow input. At the moment
animation is linear between control points of the path.

Dynamics are also possible with dVS, but do not provide for
exible
bouncing behaviours. To calculate dynamics requires precise knowledge of
the position, velocity and colliding properties of the objects in question.
However it is not possible to directly extract this information from the dVS
database since updates are made asynchronously to the database and there
is some latency involved. Thus each VEDA database object must maintain a
current position and velocity, and since collision information is conveyed by
events only, VEDA maintains its own collision database that can be queried
by any VEDA function.

Constraints are also provided by dVS in a limited way in that an ob-
ject can be constrained not to move or rotate about one or more of the
local coordinate axes. The more general constraints that VEDA provides are
implemented at the database layer. Whenever a �lter attempts to set the
position of a VEDA object a check is made against a set of currently active
constraints, and any corresponding constraints are applied. The constraint
functions themselves simply add and remove the various types of constraint
from this set, and their application is automatic.

5.8. IMPLEMENTATION 123

The gesture recognition functions are simple interfaces to external li-
braries. There are however hooks in the VEDA database layer to create,
destroy and copy the gesture data types, since their size isn't static.

124 CHAPTER 5. VEDA

Chapter 6

Evaluation

The dialogue architecture described in the previous chapter provides an im-
mersive environment within which it is possible to manipulate and create
interaction techniques and behaviours of objects. Several examples of the
construction of object hierarchies and data
ow structures were given to
illustrate the range of possibilities that are possible with the components
supplied.

This chapter evaluates the VEDA system for the implementation and
prototyping of environments. Firstly, in Section 6.1, it considers the requi-
sites and desires for the manipulation of interactions that were the product
of Chapters 2 and 3 and shows how this system provides a simple way to
make the proscribed changes from within the system.

Secondly, in Section 6.2 we consider a moderately sized application that
was constructed using the tools described in the previous chapter in order
to show how the dialogue architecture gives a large degree of
exibility in
the design of the virtual environment and how an environment a�ords dif-
ferent manipulation capabilities to participants with di�ering experience of
the toolkit.

Thirdly, in Section 6.3, we consider applications built by novice virtual
environment designers that illustrate the breadth of the toolkit, the ease
with which interfaces can be prototyped and the advantages that such an
approach gives, even if the desired behaviour falls outside the scope of the
�lters provided and requires new �lters to be programmed.

Finally in Section 6.4 we place VEDA in a taxonomy of visual program-
ming languages to illustrate the design decisions that were made.

125

126 CHAPTER 6. EVALUATION

6.1 Manipulating Interactions

Chapters 2 and 3 described work to design appropriate and intuitivemetaphors
for interaction with virtual environments. The conclusions of these chapters
pointed out some shortcomings of current VE systems and voiced a desire
for certain major and minor aspects of the interaction to be made modi�able
for particular tasks, environments and users.

Some of the main technical points were as follows:

1. Changing the sense in which a toggle or switch works.

2. Rede�ning e�ects of button combinations or providing new combina-
tions.

3. De�ning gestures within the environment.

4. Recon�guring or enabling gestures for interaction.

The �rst two items result from the work on the Desktop Bat, see Chapter
2, and the second two from the Virtual Treadmill metaphor, see Chapter 3.

Providing these types of modi�cations is simple to perform within the
environment given the �lter and tools provided in the VEDA system. The
sense in which a button works can be inverted by using a not �lter, and
button combinations can be re-arranged using and �lters. In fact the simple
�lters described in Section 5.5.3 allow a very broad range of dependencies on
boolean events to be de�ned.

Gestures can be demonstrated and recognised within the environment
using the two types of gesture �lter given in Section 5.5.4. Again using the
tools in Section 5.5.3 and the general data
ow editing tools, many gesture
dependencies can be de�ned and modi�ed within the environment.

Recon�guring interaction techniques is also simple with VEDA. Chapter
3 referred to the following three choices for the navigation technique in a
virtual environment:

1. Fly in the direction the hand is pointing by pressing a 3D mouse button.

2. Fly along line of sight by pressing a 3D mouse button.

3. Fly along line of sight by making the gesture of \walking on the spot"
(Virtual Treadmill metaphor.)

The data
ow con�guration for the second metaphor was given in Figure
5.2 and the con�guration for the third in Figure 5.14. The di�erence be-
tween these two was the use of a gesture to trigger the move tool which is

6.1. MANIPULATING INTERACTIONS 127

an easy modi�cation to make. The di�erence between the �rst and second
metaphors is simply the direction in which the navigation occurs, and this
can be changed within the environment by detaching the data stream from
the head polhemus and attaching it to the hand polhemus1.

6.1.1 Discussion

There is a large range of further navigation and interaction techniques that
can be exploited. Some of these were discussed in Chapter 5. Some examples
are:

� Cross-hair
ying where the participants
ies in the direction indicated
by the vector between their hand and their eye [Min95].

� Selection at a distance [Min95]. Apart from recon�guring the method
of picking (x5.5.2), it is possible to make the pick object larger and use
it to select objects far away.

� Movement constrained to a ground plane. Using the constraint tools
described in Section 5.5.5 the participant can be constrained to a plane
or a line.

� Virtual vehicle movement. It is possible to provide simple virtual ve-
hicles in the environment to which the participant can attach and pas-
sively follow around, or more sophisticated vehicles which have their
own virtual controls which the participant can operate.

The choice between these metaphors should be determined by the partic-
ipant and the tasks which they are expected to perform. It is important to
note though that although there is a tendency for the interactions described
in this work to be based upon the body-centred interaction paradigm (x3.10),
this is an application level design decision and many other styles of interface,
such as menu based, are possible.

The approach to interaction de�nition within VEDA is highly modular
since once a set of gesture functions has been de�ned or con�gured they
can be replicated and combined, using the simple �lters of Section 5.5.3 to
provide more complex gestures. This can include posture sequences such as
those described in Section 3.2, or gestures involving several body parts.

1This illustrates one problem in that during the reconnection the participant is unable
to move unless a second navigation metaphor is enabled. For this reason the head and
hand polhemus are close together in the standard environment.

128 CHAPTER 6. EVALUATION

6.2 Example Application

This section illustrates the components and possibilities for modi�cation of
an example table tennis application. The application allows play against a
computer opponent or with, some modi�cations, against another participant
in a collaborative set-up [SS96]. A view of the application is shown in Figure
6.1. In this �gure, all of the data
ow components are hidden within top-level
meta objects in the manner described in Section 5.4 and the application is
shown in \run" mode.

Figure 6.1: The table tennis application

6.2.1 Components

The major components of the table tennis application, the top-level repre-
sentations of which are all visible in Figure 6.1, are:

� The participant - encompassing all the standard interaction techniques.

� The ball which has a dynamics behaviour described in full below.

� The bat and table on which the ball will bounce.

� The net and
oor, collision with which will reset the ball to a starting
place.

� The opponent, either an automaton or a second player equipped with
a second bat.

6.2. EXAMPLE APPLICATION 129

Each of these is a meta-object inside the environment that contains sev-
eral data
ow objects. The data
ow de�nition of the ball meta-object is
illustrated in Figure 6.2. Two major components are shown, a dynamics be-
haviour receptor and a collide �lter. The basic dynamic behaviour receptor
takes �ve inputs: identity of an object to control, noti�cation of the iden-
tities of colliding objects, a reset
ag, time values and a gravity strength
value. The reset input initialises the dynamics behaviour which in this ap-
plication corresponds to serving the ball. The ball meta-object is connected
to the identity input of the dynamic behaviour as would be expected, and
similarly the dynamic behaviour is concerned with collision events with the
same object.

Filter
DynamicCollide

Object
Ball

GravityTimeReset

Filter

Figure 6.2: De�nition of the ball object

Everything within the dotted ellipse of Figure 6.2 is a component of the
ball object and all objects within and arrows leading to that ellipse are detail
that would normally be hidden during play.

Figure 6.3 shows the immersive representation of the ball object and
components. The layout is purposefully similar to that shown abstractly in
Figure 6.2 but in this case external connections are not shown since they are
connected to �lters or other meta-objects that are currently not shown at a
high level of detail.

The other major components of the environment, the net and
oor are in
e�ect buttons that are connected to the ball's dynamic behaviour reset input
in order to place the ball back into the serve position.

6.2.2 Customization

Possibilities for customization are many and various. Any of the objects can
be changed and copied so there could be two balls shaped of any shape. Thus
table tennis is a very speci�c description of the application since the com-

130 CHAPTER 6. EVALUATION

Figure 6.3: Immersive de�nition of the ball object

ponents could be re-arranged and modi�ed to play volley-ball for example,
though editing of the geometry of the objects themselves is not yet possible
within VEDA.

More interesting customizations arise when considering how the ball is
served, that is, determining what is connected to the reset input of the dy-
namic behaviour �lter. Three possibilities are: connection to one of the 3D
mouse buttons, connection to a virtual button and connection to a gesture
recogniser. The second and third allow a lot of
exibility, for example the
button could be positioned near to the table or could be the table itself so
tapping the table would serve the ball. Alternatively, since gestures can be
de�ned inside the environment, serving could be enabled by waving the bat
under the ball or standing in the serving position.

Another customizable component of the application is the behaviour of
the opponent. The core of the opponent is an application speci�c �lter that
knows about the ball and table objects and moves a second bat in order to
return the ball. In a collaborative setup customization could involve simply
removing this behaviour and having a second participant pick up another
object and use it as a bat. The second participant could always cheat by not
removing the computer player and play two against one.

One part of the application that is designed to be customizable is gravity.
This is usually connected to a virtual slider since no real dials or sliders are
connected to the current system. This slider might be part of the default
application or might be hidden inside the component hierarchy of a meta
object, in which case it would only be accessible to experienced VEDA users.

6.3. A USER STUDY 131

6.3 A User Study

A user study was conducted to evaluate whether participants could learn
VEDA's model and use it to perform useful modi�cation and creation tasks.
This was an in-depth study and the three people who participated all accom-
plished tasks of signi�cant complexity.

The format of each evaluation was three 2-3 hours sessions using VEDA,
though one participant spent a considerably longer time using VEDA and
developed an experiment for use in an MSc project.

Each of the participants had some experience of VE technology before
and all had degrees in computer science. Participant A, a recently �nished
undergraduate had some experience writing scripts for the POVRAY ray
tracer to describe and animate objects. Participant A had three years expe-
rience programming in C, and had completed a course in object-orientated
programming in C++. Participant B was a second year PhD student study-
ing arti�cial intelligence who had four years programming experience. He
was interested in using AI techniques to describe VEs but had little ex-
perience with description languages apart from some experimentation with
VRML1.0 and knowledge of the DXF format. Participant C was undertaking
a MSc course in VEs, with a scene description element. He was undertaking
a project using VEDA and had two years of experience with programming,
though none using an object-orientated language. None of the participants
had been exposed to a data
ow language.

Sessions roughly broke down into one practise session to gain familiarity
with VEDA, one experimental session where they would use the techniques
they had learnt to do a few simple tasks and one exploratory session where
they tried to accomplish a task that they had suggested.

Three rough classes of modi�cations were investigated: modi�cation of
an existing application, exploration and creation of new tools, and extension
of VEDA with a new �lter. These cover many of the same tasks that were
performed in Chapter 5, and again they demonstrate the
exibility of VEDA
for describing environments.

It was expected that each participant would be able to make simple mod-
i�cations to the applications within VEDA. Given the short amount of time
that they would have to become familiar with the set of �lters available they
were not expected to build radically new behaviours without some consul-
tation. The criteria for success were that the participants would be able to
access and understand existing data
ow structures, manipulate the data

ow using the tools discussed in Chapter 5, and be able to design and build
simple new dialogues involving roughly six �lters.

Overall once the participants became familiar with the environment and

132 CHAPTER 6. EVALUATION

reached a certain level of expertise with the tools and metaphors for inter-
action they found it simple to modify the dialog. Their accomplishments
exceeded expectations as they found the data
ow metaphor easy to under-
stand and their suggestions showed quite a deep understanding of what could
be accomplished with the tools and �lters they had utilised.

6.3.1 Application Modi�cation

Participant A did not have any speci�c goals when starting the sessions. The
scope of the familiarization session was thus fairly broad and covered all of the
major interaction techniques. This began with a familiarization with a table
tennis environment without any of the modi�cation tools embedded within
it. This introduced the default navigation, selection and picking metaphors
(x5.5.2).

Once comfortable with these tasks, the VEDA speci�c techniques were
introduced. In rough order of introduction, these were copying and deleting
objects, revealing and hiding levels of detail, connecting and disconnecting
streams of data, and encapsulating and de-encapsulating objects.

Experimentation with these techniques involved the participant's access-
ing, decoding and modifying the behaviour of the ball. He gained access to
the gravity slider, by revealing the ball's behaviour and decoding the data

ow hierarchy. He removed the slider from the ball hierarchy using deecap-
sulate and could then modify gravity whilst the ball was bouncing. Once a
gravity value was set the slider was replaced in the ball hierarchy using en-
capsulate and hidden away. Subsequently the participant revealed the slider
and deleted it from the environment.

Initially the participant found the amount of detail in the ball description
daunting, but given the 3D layout he was able to discriminate and trace indi-
vidual connections. This was a common hurdle with all the trials, but more
experience and familiarity with likely layouts overcame this. This particu-
lar participant did suggest making a new meta object which would have the
ball's dynamics and collide behaviours as components, and an interface com-
posed of the reset and gravity inputs of the dynamics. Figure 6.4 sketches
the hierarchy that was proposed . This hierarchy would have the bene�t that
detail that does not change very often, such as the dependency on an ani-
mation time input and the collision detection, wouldn't be seen when more
common modi�cations were made.

There were three main modi�cations made to the table tennis application:
direction of navigation, the addition of a backwards navigation, and revision
of the object picking metaphor for a speci�c object.

The process of making the �rst modi�cation was described in Section

6.3. A USER STUDY 133

meta

id

id

collide function

dynamics function

new

reset
gravity

Ball

Figure 6.4: Proposed revision of the ball's objects hierarchy

6.1. The participant knew of this technique from the introductory literature
and wanted to try it since he was uncomfortable pointing in the direction of
movement. The initial attempt to disconnect the direction input from the
hand sensor function and connect it to the head sensor function resulted in his
being too far away from the head function's output to make the connection
without putting his hand behind the tracking device2, but he realised he could
reconnect it to the hand and then move to a better location from where it
would be possible.

However once this modi�cation was made, a second was required since it
was impossible to move backwards easily. Backwards motion was e�ectively
a second navigation metaphor very similar to the �rst, except that it was
attached to a di�erent button, and the direction of motion was extracted
from the inverse of the reported position of the head using an invert position
�lter (x5.5.6). The complete data
ow for this navigation metaphor is given
in Figure 6.5.

The third modi�cation involved replacing the picking metaphor to make
it easier to handle the bat when playing the game. The participant thought
that having to hold the button in when holding the bat was inconvenient as

2A Fastrak only reports position in a half-space relative to the tracker source, the e�ect
of placing the tracker receiver behind this half-space is to invert the reported coordinates
and thus the hand \disappears" from view.

134 CHAPTER 6. EVALUATION

Right
Button

Button
Left

Invert
Position

Polhemus
Head

Object
Move

Object
Move

Participant

Figure 6.5: The complete revised navigation metaphor

he forgot occasionally and dropped the bat whilst making a movement. The
�rst attempt at implementing this is shown in Figure 6.6a. This di�ers from
the standard metaphor shown in Figure 5.12, in that the bat does not have
to be selected and is automatically picked when the trigger button is pressed,
and that there is a toggle �lter between the trigger and the pick function.
This means that participant simply has to press the trigger once to pick the
bat up and a second time to drop it.

This metaphor worked very well, but given the behaviour of the pick
function, (x5.5.2), a result was that when an object was picked the relative
transform to the hand was maintained, and the bat did not always appear to
be attached to the hand. This was remedied by explicitly setting the position
of the bat object to the position of the hand, see Figure 6.6b.

Lack of time prevented any further modi�cations, but the participant was
satis�ed that the revised table tennis application was easier to use than the
original one. Further suggestions made by the participant in the �nal session
were to revise the navigation metaphor again to be cross-hair
ying (x6.1.1),
and to continue the modi�cation of the picking metaphor. His suggestion was
that rather than have picking enabled by pressing a button, the bat would
picked up by touching the hand to it and put down by touching the bat to a
new table object that would stand adjacent to the main table tennis table.
The participant was con�dent that he could make these modi�cations given
more time.

6.3. A USER STUDY 135

(a)

Hand

(b)

Button
Trigger

Tracker

Bat

Bat
User’s

Trigger

Pick

ToggleButton

Gate

Toggle

User’s

Position
Set

Figure 6.6: Two iterations of the bat picking metaphor

6.3.2 Tools Exploration

The familiarisation sessions for participant B followed a similar format to
those of the �rst since he also did not have a speci�c task in mind. The
experimentation phase also started with investigation and decoding of the
behaviour of the behaviour of the ball. However this participant was side-
tracked by the desire to change the scale of an object into investigating the
behaviour of the scale tool (x5.6).

The participant found the complete data
ow description of the scale tool
initially confusing though once he had discovered what parts of the hierarchy
did, he learnt to hide them away.

For the exploration phase it was suggested that he try and build a similar
tool for colouring objects based around a colour function (x5.5.5). This takes
as input the identity of an object to colour and three
oating point values
that represent the red, green and blue intensities to apply to it.

To explore how this function operated, the inputs were connected up
directly, with one slider being attached to the red input, and the id object
of a meta object directly connected to the identity input. Then the slider
was copied twice more so that all three colour components could be speci�ed
independently. The next stage was to provide a simpler way to identify the
object to colour. This was done in an identical manner to the scale tool, the
object to colour is that which is colliding with a top-level meta object that

136 CHAPTER 6. EVALUATION

represents the new colour tool. An outline of the components of the resulting
tool is shown in Figure 6.7a. The shaded elements of Figure 6.7a are those
objects that appear at the usual presentation level of the colour tool object.

(a)
Collide

(b)

3D Slider

Slider

Slider

Slider

Colour
Tool Object

Colour

Colour
Tool Object

Colour

Collide

Figure 6.7: Abstract de�nition of two versions of the colour tool object

The three sliders would usually be constrained to the colour tool object,
though this wasn't actually carried by the participant.

Having three sliders is cumbersome and it was suggested to the partic-
ipant that he create a single 3D slider that would generate three outputs
that could be connected up in the manner shown in Figure 6.7b. Deciding
how this would be accomplished was the single most di�cult task carried out
by any of the experimental subjects, though having thoroughly investigated
how a 1D slider object worked and with a little experimentation he was able
to �rst build a 2D slider, and subsequently a 3D slider was a simple exten-
sion. The main step was realising that multiple constrain between functions
(x5.5.5) could operate together to describe a completely bounded space. The
design therefore required three orthogonally placed slider bars and a single
slider button which was constrained between all three slider bars. The three
between constraint �lter functions generate three outputs and these are used
as inputs to the colour tool function. The abstract representation of the 3D
slider data
aw is shown in Figure 6.8. The immersive presentation of the
�nal colour tool object is shown in Figure 6.9.

A second exploratory task was based upon one of the participant's sug-
gestions. This was to create a simple world that investigated the properties
of collision detection and dynamics in a di�erent setting to that of the table

6.3. A USER STUDY 137

Constrain
With

Bar
With

Button

Slider

Slider

Slider

Bar

Between Slider
Output

Bar

Constrain

Output
SliderBetween

Constrain

Constrain

Constrain
With

Constrain

Between Slider
Output

Slider

Figure 6.8: Abstract representation of the 3D slider

Figure 6.9: Immersive representation of the �nal colour tool object

138 CHAPTER 6. EVALUATION

tennis game. The world would contain a box with a ball inside that could be
caught and thrown by the participant.

The components of this world were quite simple, the box, a ball identical
to the one used in the table tennis application, and a technique for picking
the ball similar to the one employed for picking the bat in the revised table
tennis application (x6.3.2). However the construction was problematical and
time constraints led to it's being left uncompleted.

The �rst problem was due to the fact that the containing box couldn't
be a single object since collision detection in dVS is done on bounding boxes
and not object surfaces. This would mean that the ball inside the cube would
be continually colliding which would lead to a strange dynamics behaviour.
Therefore the box had to be composed of six separate face objects. This led
to the problem that such a face object didn't exist so a break had to be taken
whilst the supervisor created a face object in 3D Studio and converted it into
the required format. Once imported in to the world, the face objects had to
be aligned and this was di�cult since VEDA did not support any alignment
tools. Once this was roughly accomplished the objects had to constrained to
each other to form the complete cube.

The second problem was also due to the collision detection. In this case
it was the fact that the constructed face objects were very thin and thus it
was relatively easy for the ball to pass through a face since the collision test
was based upon a bounding box overlap test at discrete time intervals3. A
work around using constrain between functions was suggested, but lack of
time prevented its implementation. This meant that the catch and throw
behaviour was also left unimplemented.

Overall though this evaluation was successful since the construction of
the colour tool was a task more di�cult than any that was expected to be
completed during the evaluation.

One of the main criticisms that this participant made during the sessions
was that buttons gave no feedback when pressed4. After the �nal session
the participant brie
y sketched out solutions that used the colour and path
following functions of VEDA.

3This was problem was encountered before during the construction of the table tennis
application. Since it was due to the behaviour of dVS's collision actor there was no way
to �x it directly, but for the table tennis it was worked around by joining the table top to
the table legs so that the space below the table was e�ectively collidable

4Audio feedback was programmed into VEDA, but was not working due to a hardware
fault during the evaluation.

6.3. A USER STUDY 139

6.3.3 VEDA Extension

Participant C undertook a more involved evaluation with the speci�c aim of
extending VEDA with a more complete body model and testing the e�ect
of the body model of the sense of presence within the environment. This
involved two main tasks, writing an inverse kinematics �lter to model the
positions of body parts not directly tracked, and building a demonstration
environment which could be used in an experiment.

Training of this participant followed similar path to the other two, but
focussed on the data
ow from the source and the various �lters to do with
manipulating object positions.

The kinematics �lter was written in C, and the code linked into VEDA
once a suitable interface to map the VEDA data inputs on to the function
calls of the new module had been written. The mapping was a set of con-
versions from the VEDA position type, a four by four homogeneous matrix,
to the �lter's position type which used six
oating point numbers, three for
position and three euler angles for rotation. The �lter took two inputs, the
positions of the head and the hand, and generated ten outputs. These cor-
responded to two positions to model the free arm, the right shoulder and
right elbow, and two sets of four positions to model the left and right legs
each having the hip, knee, ankle and toe positions. The output data objects
were presented in a known order, but to make things simple, the function
representation was designed to have the input and output data objects in the
correct positions about a model of a body.

Once these joint positions were available, a body was constructed by
stretching limb objects between pairs of joint positions using stretch position
�lters (x5.5.6). Figure 6.10 illustrates this by showing the abstract data
ow
for the complete arm model. The �rst stage of the body construction was
to test the stretching of each limb separately. Thus one limb was stretched
between pairs of joint positions in turn. This quickly showed that the co-
ordinate systems of VEDA and the new �lter did not agree. Rectifying this
involved the participant's re-writing the source code that mapped VEDA
data streams onto the kinematics function inputs.

Once satis�ed with the behaviour of the �lter a complete body could
be constructed by copying the existing limb a further seven times and re-
connecting the inputs to the new objects. In addition a body object was
attached to the head position. However it was found to be hard to inspect
the overall behaviour of the body from an egocentric viewpoint and this led
to the construction of a dummy body. The dummy body was not connected
to the head and hand position in any way, but used the positions of two
new meta objects as the head and hand. This meant that the body could be

140 CHAPTER 6. EVALUATION

Kinematics

Elbow
Shoulder

Hand

Set
Position

Position

Head
Position

Stretch
Between

Set
Position

Arm
Upper

Arm
Lower

Stretch
Between

Figure 6.10: The abstract data
ow model of the arm

manipulated much like a mannequin. Once the mannequin was completed
and used to demonstrate the behaviour of the body, it was then animated
by creating paths for the dummy head and hand to follow.

The remaining tasks for this participant were to model the geometry of
the limbs and construct an experimental scenario. These were not completed
at the time of writing and did not involve using VEDA itself.

Overall the main advantage that this participant gained from using VEDA
was that there was no need to write a test harness for the kinematics �lter
in order to use it within a VE. Coding the body behaviours directly in C
would have meant that any application requiring a body would have had to
have been rewritten whereas with this approach the objects that de�ned the
body could be imported into any environment.

This participant made similar comments to the others about using VEDA.
Once over a few minor hurdles to do with behaviour of the system, he found
it easy to make quick modi�cations to explore the behaviour of his �lter.

6.3.4 Conclusions

The criteria for success were that participants would be able to understand
and modify existing data
ows, and create simple new data
ows. Overall
the user evaluation was very successful, with each participant performing
reasonably complicated tasks.

Initially each participant found the view of the data
ow network slightly
confusing, but all of them quickly got used to this. Whether or not the 3D
view was of intrinsic bene�t to this task, as suggested in Section 5.2, was
not explicitly determined by the evaluation, but two participants stated that

6.4. VEDA AS A VISUAL PROGRAMMING LANGUAGE 141

the 3D view helped them when tracing out speci�c data
ow connections
and also helped them to spatially separate the objects in to connected and
interacting components.

It had also been expected that each participant would be able to make
simple modi�cations to environments such as those listed in Section 6.1.
Such modi�cations were easily understood conceptually and practically by
the participants and they were all able to perform them. Furthermore all the
studies involved phases where the participants had to create new data
ows
from unconnected components. None of them found this di�cult, with one
commenting that it made VE construction \similar to D.I.Y".

The main problems brought out by the experiment were the lack of ge-
ometry editing within VEDA and reliance on an external collision detection
algorithm and consequent lack of control over behaviour. Both of these prob-
lems could be solved given an appropriate system.

Each participant was pleased with the tasks they managed to carry out
and saw possibilities for customization that had not been anticipated. Many
of the tasks undertaken were suggestions made whilst immersed within the
application and most could be carried out immediately without any need to
learn a new part of the toolkit.

6.4 VEDA As A Visual Programming Lan-

guage

Data
ow visual programming languages can be classi�ed according to as-
pects of their design and their application domain [Hil92]. Hils uses the
following criteria to distinguish between the design of VPLs and gives sev-
eral examples for each:

� Pure data
ow model. The VPL may have added control
ow con-
structs which make it impure.

� Box-line representation. The standard representation has boxes, rep-
resenting functions, connected by lines representing data
ow, but this
is not necessary.

� Iteration. The VPL may provide iteration in some way, by circular
graphs or repeated execution for example.

� Procedural Abstraction. An entire graph can be condensed into a single
node.

142 CHAPTER 6. EVALUATION

� Selector and Distributor. These two constructs are complimentary, the
�rst selects which of two input values to pass to the output, the second
selects to which of two outputs to send an input.

� Sequential Execution Construct. A VPL may supply some way to
specify a sequence of functions to execute.

� Type Checking. There may or may not be type checking on the arcs
between nodes.

� Higher-Order Functions. A VPL might allow functions themselves to
be passed to other functions.

� Execution Modes. The data
ow might be demand driven or data
driven (x5.3).

� Level of Liveness. This refers to the mode in which the VPL operates.
This range from static informative languages, to live languages which
have a dynamic response to data or program changes.

Many of these criteria have been addressed during the description of the
VEDA system, but we summarize them here.

VEDA is a pure data
ow model VPL, in that it does not support
control
ow constructs like WHILE and CASE explicitly. It has a box-
line representation, but as we have seen, this is extended by exploiting
the richness of VEs as presentation environments, see Section 5.2. There is
no direct support for iteration, though the data
ow can be cyclic. There
is support for iteration over collections of objects implicit in the operation
of most of the �lters themselves. There is procedural abstraction and
we have seen that this provides a powerful method of hiding aspects of the
virtual environment (Section 5.5.8). There is indirect support for selector
and distributor functions using the simple �lters of Section 5.5.3 and the
use of multiple connections to input data objects. Sequential execution
is supported using a then �lter described in Section 5.5.3. Type checking
is supported in construction, by connections not being allowed between dif-
ferent types of input/output pairs of di�erent types (x5.5.2). Higher-order
functions are not supported. As discussed in Section 5.3, the execution
mode is data-driven rather than demand-driven. Finally the level of live-
ness is live since, unlike most data
ow languages, VEDA is designed for
immediate interactive use rather than static programming.

The representation techniques for VEDA are certainly novel compared
to other 3D VPLs such as those described in Section 4.5. In VEDA the
overriding design criteria is that the constructs of the language re
ect the

6.4. VEDA AS A VISUAL PROGRAMMING LANGUAGE 143

positioning and attributes of the objects they a�ect in the presented appli-
cation environment. This requires that the layout, at the top meta object
layer in particular, re
ect what is required from the application and can not
be constrained by layout rules such as those in 3D cone trees [RMC91]. This
free positioning of objects in the environment certainly restricts the legibil-
ity inherent in well regulated display such as cone-trees, but does allow the
objects representing VEDA behaviours to be grouped with the objects they
a�ect. The representation of individual nodes is also constrained by the ob-
jects required in application environments. There is little scope for object
appearance such as hue, saturation and orientation to re
ect attributes of
the functions it represents, such as class hierarchy, state, and liveness. Such
a scheme, see [FW94] for an example, would improve the legibility of the
data
ow but leave few choices for the design of the VE itself since the rep-
resentation of a top level meta objects should re
ect it's purpose within the
application. For intermediate level meta objects down to function objects,
the representation can re
ect their function and the examples given illustrate
this.

The interaction techniques for interacting with VEDA constructs are also
novel, since they can use the full range of techniques possible in an immersive
environment. These techniques can themselves be described by VEDA and
thus there is room for experimentation with the best metaphors for using the
VEDA tools in di�erent application contexts.

The unique aspect of data
ow languages for IVEs is the combined views
of the presentation and de�nition levels of the data
ow. This combination
constrains the view of the de�nition level somewhat, but in combination with
a live mode of operation it does provide an excellent prototyping environ-
ment.

144 CHAPTER 6. EVALUATION

Chapter 7

Conclusions

This thesis has presented and discussed the requirements for the Virtual
Environment Dialogue Architecture (VEDA) system and evaluated its utility
for creating virtual environments (VEs). This conclusion summarizes the
work on VEDA, discusses wider implications of the approach taken and some
possibilities for further work.

7.1 Contributions

The main contribution of this thesis have been the development of require-
ments for VEDA, the evolution of an approach to VE de�nition, the design
of a VE model and the evaluation of VEDA. This section describes how these
contributions have been presented.

7.1.1 Requirements for VEDA

Chapters 2 and 3 examined interaction metaphors with non-immersive vir-
tual environment (NIVE) and immersive virtual environment (IVE) systems
and presented a number of modalities inherent in interaction techniques and
requirements for modi�cation of interaction metaphor on a per user and per
task basis. In particular Chapter 2 talked about a desktop interaction device
called the Desktop Bat, though many of speci�c results about the device
apply to any desktop system. Chapter 3 considered a navigation metaphor
for IVEs called the Virtual Treadmill, and the e�ect on the sense of presence
and task performance.

Chapter 3 also discussed the sense of presence in more detail and pre-
sented a model derived from experimental work. This hypothesised that the

145

146 CHAPTER 7. CONCLUSIONS

matching the representation of self within the environment with the propri-
oceptive cues arising from interaction gives an enhanced sense of presence.

Enhancing this sense of presence leads naturally to using a combined
environment within which modi�cations can occur in place using tools and
metaphors consistent with that environment.

7.1.2 Approach

The study of NIVE and IVE interaction techniques gave some technical re-
quirements for VEDA, but the superiority of an IVE over NIVE for space
comprehension and simplicity of interaction led to VEDA's being designed
to work in an IVE system primarily, though NIVE systems are not totally
excluded. This solved a number of other problems with programming im-
mersive systems that break down into two categories (x5.2):

� Describing some aspects of a VE with a standard description language
is hard since the tasks are inherently three dimensional and easier to
describe by demonstration or dietic gestures.

� Testing a IVE means repeatedly donning and removing the display
hardware, to evaluate and then change object properties. For compiled
systems this is compounded by the fact that this interactive loop maybe
very slow.

VEDA solves this by allowing speci�cation within the environment and
since the execution mode is live, the changes made are active immediately.
The gives a very fast prototyping environment, especially with the provision
of virtual tools to aid the process. It uses the techniques of visual program-
ming languages (x4.3), though it is unique in that �eld in that it is the only
general language that is both presented with an IVE and used to describe
the IVE itself (x4.5).

7.1.3 Model

VEDA uses a data
ow model (x5.3) combined with an object hierarchy that
provides encapsulation of behaviour detail. The components of the model
come in three types: data objects which represent connection points for
data streams, function objects that represent functions that manipulate data
streams and meta objects that act as top level objects in the environment and
also to encapsulate detail and provide higher level interfaces to the combined
behaviour of a set of other objects. The data stream between objects are
depicted using tubes that connect the two data object connection points.

7.1. CONTRIBUTIONS 147

The functions of the data
ow come in three classes: device, tools and
�lters. Device functions represent sensors that measure external events and
report these as data streams inside the environment. Tool functions represent
actions that a�ect the properties of objects within the VE. Filter functions
manipulate data streams to provide facilities such as logical combinations of
trigger events, gesture recognition and collision detection. A standard set
of functions derived from consideration of virtual reality scene description
languages (x4.1)and programming libraries and (x4.2), is provided to enable
the easy description of interesting environments.

The practical use of these functions is elaborated upon in Sections 5.6
and 5.7. The former describes some examples of the construction of envi-
ronment objects with more complicated behaviour. And the latter describes
a standard environment constructed with VEDA within which manipulation
can take place. This provides some higher level tools for the participant to
use and a standard set of interaction metaphors for editing.

7.1.4 Evaluation

The evaluation of VEDA considered its utility in creating and editing en-
vironment, both in terms of functionality and usability. Firstly VEDA's
capabilities were checked against the requirements elaborated in Chapters 2
and 3. These were easily accomplished within VEDA and there were several
extensions that became very simple to accommodate (x6.1).

Section 5.6 discussed some small examples of creating more complex be-
haviours out of atomic functions, but a more substantial application, virtual
table tennis, was discussed in Section 6.2 in order to highlight how compli-
cated data
ow structures are handled. This indicated how new �lters might
be constructed and easily inserted into the application and how encapsulation
of behaviour inside meta objects make the data
ow more comprehensible.

The main part of the evaluation was three in depth trials where partici-
pants were invited to modify and create environments, see Section 6.3. The
participants were able to understand the VEDA model and despite some ini-
tials problems with the de�nition views, they able to interact and understand
immersive representations of the data
ow. In subsequent experimentation
and exploration sessions, the participants undertook and successfully com-
pleted tasks that were more complicated than expected. The sessions also
reiterated the breadth of possibilities for interaction and the possible bene�ts
for spatial comprehension that IVEs give.

Finally the evaluation classi�ed VEDA as a visual programming language
to illustrate the breadth of current languages and the choices that were made
in VEDA's design.

148 CHAPTER 7. CONCLUSIONS

7.2 Discussion

The approach to environment creation that VEDA enshrines is radically dif-
ferent frommost other VE toolkits in existence at the moment. Some toolkits
have exploited the immersive properties of an environment for geometry edit-
ing, but no other uses an immersive system to de�ne and modify behaviour of
the objects. In some ways the approach VEDA takes may be more appropri-
ate for programming IVEs since it doesn't involve the participant's having
to leave the VE and make changes in a radically di�erent view before re-
turning to the VE. It is intrinsically a naturalistic metaphor for environment
editing since it is analogous to modifying a real world machine by taking
it apart, tweaking the components and then setting it running again. This
analogy has been exploited to some extent with the toolbelt and toolbox
object hierarchies within a workshop environment.

The data
ow model underlying VEDA provides a powerful description
technique that was easily learned by participants. A very similar model with
similar �lters types forms the basis of the emerging VRML2.0 speci�cation
[VRM96]. Broadly speaking, VRML2.0 speci�es a similar object hierarchy
to that of VRML1.0 (x4.1), with the addition of script nodes that can read
and write the �eld values of objects. Scripts and �elds are connected to-
gether using ROUTES which correspond to data
ow connections in VEDA.
However VRML2.0 has no intrinsic visualization of the data
ow, and only
the VEDA equivalent of top level meta objects are ever shown to the user.
The VRML2.0 model of data
ow and execution is more sophisticated than
that of VEDA, in that portions of the data
ow that drive objects that are
not within view can be marked so they won't be evaluated. This hybrid
data and demand driven data
ow is of potential bene�t once the simulation
time for a world becomes such that it is impossible to propagate the data

ow to completion on each frame. Such considerations have not arisen in
current VEDA worlds which have over a thousand objects and hundreds of
data connections.

The immersive arrangement of the data
ow has immediate bene�ts for
constructing larger scale environments. Being able to encapsulate func-
tions and meta objects within the object they de�ne encourages an object-
orientated approach with hierarchies of components that can be copied and
instanced. The approach is obviously di�erent from a programming language
that allows inheritance and sub-classing since behaviour components can only
be added and removed but encapsulation allows a form of data hiding and
abstraction.

The main drawbacks with using VEDA were to do with understanding the
data
ow layouts and interaction techniques of the environment. Any prob-

7.3. FUTURE WORK 149

lems that were encountered with comprehension of the environment were
quickly overcome through exploration of the environment and revealing and
hiding relevant parts of the hierarchy. The process of becoming familiar with
the model of the environment's behaviour can be eased somewhat by mak-
ing the techniques more naturalistic and this was a guiding principle when
designing VEDA's tools. Of course VEDA provides a good basis from which
to explore what these immersive techniques might be and many suggestions
were made by the participants whilst immersed in the environments. In fact
since the participants were present in the application environment at the
time they made these suggestions, it could be argued that the techniques
they proposed were more suited to the overall metaphor for the environment
than others that would have been suggested when outside the environment.
For this reason it is hoped that through continued exploration with VEDA,
di�erent approaches to interaction techniques may be discovered.

7.3 Future Work

There are many avenues for future investigation with a system such as VEDA
to provide such things as collaborative modi�cation, distributed interfaces
and more complex behaviour.

Currently the use of VEDA is limited by two main issues: the single plat-
form implementation and single user environment. The platform dependence
restricts the use of VEDA to those systems running a particular version of
Division's dVS, a proprietary standard. There are several limitations inher-
ent in this approach, mainly due to the level of abstraction and consequent
loss of e�ciency at which VEDA interfaces with dVS (x5.8). Given the high
level at which VEDA interacts with the host operating system, it would be
interesting to investigate not only whether porting VEDA to another system
would be feasible, but whether or not a VEDA-like system could be imple-
mented in a VE scripting language such as Dive-TCL (x4.1) or VRML2.0.
This would remove any browser dependency at all, and would allow an au-
thors viewing, say a VRML2.0 world, to simply load in VEDA when required,
visualize the data
ow with the included objects, make the required changes,
and then remove VEDA when �nished.

The other current restriction is that VEDA is a single user system. That
is not to say it cannot be used in a shared environment, but participants
are restricted to simply viewing the other's data
ow hierarchy and can not
interact with it. Also since VEDA only propagates visual and audio infor-
mation into the dVS object database, there is no way for two functions on
di�erent hosts to set up a data
ow connection. The connection of streams

150 CHAPTER 7. CONCLUSIONS

between di�erent systems would provide a powerful model of execution, but
would introduce new complexity both at the database level and application
level. Some issues to consider are how to e�ciently map multiple streams
onto a message passing mechanism, and perhaps more interestingly the is-
sues of privacy of aspects of the data
ow. In a distributed application there
would certainly be a need to classify parts of the hierarchy as private and
public so that one participant could not a�ect, say, something in the other's
participant hierarchy, but they could collaborate on building a shared virtual
environment.

Many aspects of the single-machine and single-user VEDA could un-
doubtably be improved. As was seen in Section 6.3 there are still general
usability issues to do with IVEs. VEDA does however provide a coherent
framework to investigate those very techniques.

Other schemes for representing the data
ow should be investigated, and
perhaps some of the informal rules for layout developed by VEDA's users
should be made more concrete. One such informal rules simply dictates that
the input and output objects of a meta object or function object should be
evenly spaced out below the object. A more concrete rule might enforce a
cone-tree [RMC91] type layout on the visible portions of an object's hierarchy.

At a deeper level, VEDA's data
ow model is only one of several possible
choices and from the classi�cation of VEDA as a visual programming lan-
guage (x6.4), it can be seen that there are many variations the current scheme
that could be investigated. Existing work on 2D data
ow languages (x4.4),
illustrates some of these variations. One variation that should be useful is
the programming by demonstration model (x4.3.2).

Finally, given that one of the main motivations of VEDA to remove the
edit-compile-experience cycle from IVE construction, an immediate plan is
to integrate VEDA with a geometry editing environment so that the whole
process of constructing an environment can take place in the space that the
environment will eventually �ll.

Appendix A

VEDA Functions

Sensor Functions

Function Name Purpose
trigger Reports the state of the trigger button of the 3D mouse
left Reports the state of the left button of the 3D mouse

middle Reports the state of the middle button of the 3D mouse
right Reports the state of the right button of the 3D mouse

bottom Reports the state of the bottom button of the 3D mouse
absoluteHand Reports the position of the hand
absoluteHead Reports the position of the hand
relativeHand Reports the relative position of the hand with respect

to the head
relativeHead Reports the position of the body in the world as the

projection of the head position onto the
oor
time Reports the current clock time

151

152 APPENDIX A. VEDA FUNCTIONS

Basic Data Flow Functions

Function Name Purpose
copy Copies an object hierarchy
select Selects an object hierarchy and adds it to a selection set
delete Deletes an object hierarchy
hide Hides an object hierarchy
reveal Reveals an object hierarchy

encapsulate Encapsulates an object hierarchy within another object
deencapsulate Deencapsulate an object hierarchy from a hierarchy

pick Picks a set of objects, i.e. temporarily constraints them
to the hand object

save Saves a selected set of objects or the complete world if
the selection set is empty

Logic and Gesture Functions

Function Name Purpose
and Logical and of two data streams
not Logical negation of a data streams
or Logical or of two data streams

equal Logical equivalence of two data streams
doubleClick Recognition of two true values in a speci�ed time

then Recognition of �rst one then the second input
becoming true within a speci�ed time

delay Delays a data stream by a speci�ed time
gate Allows data streams to be suspended
toggle Output value switches each time the input becomes

true and then false
gestureRecognise Recognize a gesture from a position stream using

a speci�ed feature based gesture
gestureTrain Train a feature based gesture from a position stream
neuralNet Train and recognize a neural net based gesture

153

Object Property Functions

Function Name Purpose
speci�cCollide Reports collision between two speci�ed objects
generalCollide Reports collisions with a speci�ed object
constrainTo Constrains one object to another object

constrainBetween Constrains one object to lie between the
endpoints of the X-axis of another object

constrainAlong Constrains one object to lie along the X-axis
of another object

dynamics Controls the simulation of gravity and collision
acting upon an object

colour Applies a colour to an object
scale Applies a scale to an object
move Moves an object in a speci�ed direction

makePath Create an animation path
followPath Moves an object along an animation path

Position Functions

Function Name Purpose
getPosition Returns the position of an object
setPosition Sets the position of an object
getRelative Get the relative transformation between two positions
setRelative Applies the relative transformation to positions

to obtain a composite position
invertPosition Inverts a position
stretchPosition Creates a position that would stretch a unit long

object between two positions

154 APPENDIX A. VEDA FUNCTIONS

Miscellaneous Functions

Function Name Purpose
kinematics Generates body part positions from position of a

hand and head
attract Simulates a force being applied to an object

tubeDispenser Creates new tubes for data
ow connection
multimeter Debugging function
opponent Opponent simulation component of the table tennis

application

Bibliography

[aMMB89] A. L. Ambler an M. M. Burnett. In
uence of visual technology
on the evolution of language environments. IEEE Computer,
6(2):9{22, October 1989.

[BBH+90] C. Blanchard, S. Burgess, Y. Harvill, J. Lanier, A. Lasko,
M. Oberman, and M. Teitel. Reality built for two: A virtual
reality tool. Computer Graphics, 24(2):35{36, March 1990.

[BBL93] T. Baudel and M Beaudouin-Lafon. Charade: Remote control of
objects using free-hand gestures. Communications of the ACM,
36(7):28{35, 1993.

[BC94] G. Burdea and P. Coi�et. Virtual Reality Technology. Wiley
Interscience, 1994.

[BDHO92] Je� Butterworth, Andrew Davidson, Stephen Hence, and
T.Marc Olano. 3DM: A three dimensional modeller using a head
mounted display. Computer Graphics. Special Issue 1992 Sym-
posium on Interactive 3D Graphics, pages 135{138, 1992.

[BF95] W. Bar�eld and T.A. Furness III, editors. Virtual Environments
and Advanced Interface Design. Oxford University Press, 1995.

[BH93] Monica Bordegoni and Matthia Hemmje. A dynamic gesture
language and graphical feedback for interaction in a 3D user
interface. Computer Graphics Forum, 12(3):C1{C11, 1993. Pro-
ceedings of EUROGRAPHICS'93.

[BH95] W. Bar�eld and C. Hendrix. The e�ect of update rate on the
sense of presence within virtual environments. Virtual Reality:
The Journal of the Virtual Reality Society, 1(1):3{16, 1995.

[BHV92] K. B�ohm, W. H�ubner, and K. V�a�an�anen. Given: gesture driven
interactions in virtual environments. A toolkit approach to 3D

155

156 BIBLIOGRAPHY

interactions. In Informatique 92: Interface to Real and Virtual
Worlds, Montpellier France, 23-27 March, pages 243{254, 1992.

[Bie86] E.A. Bier. Skitters and jacks: Interactive 3D positioning tools. In
F. Crone and S. M. Pizer, editors, Proc. 1986 ACMWorkshop on
Interactive 3D Graphics, Chapel Hill, NC, October 22-24, pages
183{196. ACM Press, 1986.

[Bie90] E.A. Bier. Snap-dragging in three dimensions. Computer Graph-
ics, 24(2):193{203, 1990. Special Issue on Symposium on Inter-
active 3D Graphics.

[BM86] W. Buxton and B.A. Myers. A study in two-handed input. In
CHI'86 Proceedings. ACM Press, New York, 1986.

[BMB86] N.I. Badler, K.H. Manoochechri, and D. Bara�. Multi-
dimensional input techniques and articulated �gure positioning
by multiple contraints. In F. Crone and S. M. Pizer, editors,
Proc. 1986 ACM Workshop on Interactive 3D Graphics, Chapel
Hill, NC, October 22-24, pages 151{169. ACM Press, 1986.

[Bor81] A. Borning. The programming language aspects of thinglab,
a constraint-oriented simulation laboratory. ACM Trans. Pro-
gramming Languages and Systems, 3(4):353{387, 1981.

[Bor86a] A. Borning. De�ning constraints graphically. In Proceedings of
CHI'86, pages 137{143. ACM Press, 1986.

[Bor86b] A. Borning. Graphically de�ning new building blocks in
ThingLab. Human Computer Interaction, 2:269{295, 1986.

[BPP95] Gavin Bell, Anthony Parisi, and Mark Pesce. The virtual re-
ality modeling language, version 1.0 speci�cation. Web doc-
ument, available at http://vrml.wired.com/vrml.tech/vrml10-
3.html, May 26 1995.

[Bri93] Louis M. Brill. Facing interface issues. Computer Graphics
World, 15(4), April 93.

[Bro88a] M.H. Brown. Exploring algorithms using balsa-ii. Computer,
pages 14{36, May 1988.

[Bro88b] M.H. Brown. Perspectives on algorithm animation. In Proc.
CHI'88: Human Factors in Computing Systems, pages 33{38.
ACM Press, 1988.

BIBLIOGRAPHY 157

[BS84] M.H. Brown and R. Sedgewick. A system for algorithm ani-
mation. Computer Graphics (Proceedings of SIGGRAPH'94),
18(3):177{186, 1984.

[BS85] M.H. Brown and R. Sedgewick. Techiques for algorithm anima-
tion. IEEE Software, pages 28{39, January 1985.

[BSZS95] W. Bar�eld, T. Sheridan, D. Zeltzer, and M. Slater. Presence
and performance within virtual environments. In W. Bar�eld
and T. Sheridan, editors, Virtual Environments and Advanced
Interface Design. Oxford University Press, 1995.

[CFD+89] Upson C., Faulhaber Jr.T., Kamins. D, Laidlaw D., Schlegel
D., Vroom J., Gurwitz R., and A. van Dam. The application
visualization system: A computational environment for scienti�c
visualizaion. IEEE CG & A, pages 30{42, September 1989.

[CH93] C. Carlsson and O. Hagsand. Dive - a platform for multi-user
virtual environments. Computers and Graphics, 17(6), 1993.

[Cha87] S.-K. Chang. Visual languages: A tutorial and survey. IEEE
Software, pages 29{39, January 1987.

[Cha90] S.-K. Chang, editor. Principles of Visual Programming Systems.
Prentice Hall, New York, 1990.

[CHB+89] J.C. Chung, M.R. Harris, F.P. Brooks, H. Fuchs, M.T. Kel-
ley, J. Hughes, M. Ouh-Young, C. Cheung, R.L. Holloway, and
M. Pique. Exploring virtual worlds with head-mounted displays.
SPIE Vol. 1083 Three-Dimensional Visualization and Display
Technologies, pages 42{52, 1989.

[CMS88] M. Chen, S.J. Mountford, and A. Sellen. A study in interactive
3-D rotation using 2-D devices. Computer Graphics, 22(4):121{
129, August 1988.

[CP88] P.T. Cox and T. Pietrzykowski. Using a pictorial representation
to combine data
ow and object orientation in a language inde-
pendent programming mechanism. In Proceedings International
Computer Conference, pages 695{704. IEEE, 1988.

[CRP95] A. Colebourne, T. Rodden, and K. Palfreyman. VR-MOG: a
toolkit for building shared virtual worlds. In M. Slater, editor,

158 BIBLIOGRAPHY

Proceedings Conference of the FIVE working group (QMW Uni-
versity of London, UK, 18-19 December 1995). Queen Mary and
West�eld College, University of London, Mile End Road, Lon-
don, E1 4NS, UK, 1995. ESPRIT Working Group 9122.

[CW92] D. Chapman and C. Ware. Manipulating the future: Predictor
based feedback for velocity control invirtual environment navi-
gation. Computer Graphics. Special Issue 1992 Symposium on
Interactive 3D Graphics, pages 63{66, 1992.

[Cyp91] A. Cypher. Eager: Progamming repetitive tasks by example.
In Proc. CHI '91, pages 33{39, New Orleans, Louisiana, April
1991. ACM Press, New York.

[Dee92] Michael Deering. High resolution virtual reality. Computer
Graphics, 26(2):195{202, July 1992.

[DGB+79] R. Dilts, J. Grinder, J. Bandler, L. DeLozier, and L. Cameran-
Bandler. Neuro-Linguistic Programming I. Meta Publication,
1979.

[Div92] Division Ltd., 19 Apex Court, Woodlands, Almonds-
bury,Bristol,NS12 4JT, U.K. Provision dVS manual, 1992. ver-
sion 0.2.

[Div94a] Division Ltd., 19 Apex Court, Woodlands, Almonds-
bury,Bristol,NS12 4JT, U.K. dVISE User Guide, 1994.

[Div94b] Division Ltd., 19 Apex Court, Woodlands, Almonds-
bury,Bristol,NS12 4JT, U.K. dVS Technical Overview, 1994.
Version 2.0.4.

[Div94c] Division Ltd., 19 Apex Court, Woodlands, Almonds-
bury,Bristol,NS12 4JT, U.K. xDVISE User Guide, 1994.

[DRP+92] N.I. Durlach, A. Rigopulos, X.D. Pang, E.m. Wenzel, W.S.
Woods, A. Kulkarni, and H.S. Colburn. On the externaliza-
tion of auditory images. Presence: Teleoperators and Virtual
Environments, 1(2):251{257, 1992.

[Dui88] R.A. Duisberg. Animation using temporal constraints: An
overview of the animus system. Human Computer Interaction,
3(3):275{307, 1987/88.

BIBLIOGRAPHY 159

[Ell91] S.R. Ellis. Nature and origins of virtual environments: A bibli-
ographical essay. Computing Systems in Engineering, 2(4):321{
347, 1991.

[FG84] W. Finzer and L. Gould. Programming by Rehearsal. BYTE,
9(6):187{210, June 1984.

[FH93] S. Sidney Fels and Geo�rey E. Hinton. Glove-talk: A neural net-
work based interface between a data-glove and a speech synthe-
sizer. IEEE Transactions on Neural Networks, 4(1):2{8, January
1993.

[FH95] Emmanuel Fr�econ and Olof Hagsand. The Dive/Tcl Be-
haviour Interface. Swedish Institute of Computer Sci-
ence, Stockholm, November 23 1995. Available from
http://www.sics.se/dive/manual/tcl-behaviour.html.

[Fis90] S.S. Fisher. Virtual interface environments. In Brenda Laurel,
editor, The Art of Human-Computer Interface Design. Addison
Wesley, 1990.

[FMHR86] S.S. Fisher, M. McGreevy, J. Humphries, and W. Robinett. Vir-
tual environment display system. Proc. 1986 ACM Workshop on
Interactive 3D Graphics, Chapel Hill, NC, October 22-24, pages
77{87, 1986.

[Fol86] J.D. Foley. Dynamic process visualization. IEEE CG & A,
6(3):16{25, 1986.

[Fol87] James D. Foley. Interfaces for advanced computing. Scienti�c
American, pages 83{90, October 1987.

[FW94] G. Franck and C. Ware. Representin nodes and arcs in 3D net-
works. In Proc. 1994 IEEE Symposium Visual Languages, pages
189{190, 1994.

[FWC84] James D. Foley, Victor L. Wallace, and Peggy Chan. The hu-
man factors of computer graphics interaction techniques. IEEE
Computer Graphics and Applications, pages 13{48, November
1984.

[GB93] Enrico Gobbetti and Jean-Francis Balaguer. VB2 an architec-
ture for interaction in synthetic worlds. In Proceedings User
Interface and Software Technology (UIST'93). ACM Press, New
York, 1993.

160 BIBLIOGRAPHY

[GB95] Enrico Gobbetti and Jean-Francis Balaguer. An integrated en-
vironment to visually construct 3d animations. In SIGGRAPH
95 (Los Angeles, CA, August 6-11, 1995), Computer Graphics
Proceedings, Annual Conference Series, pages 395{398. ACM
SIGGRAPH, 1995.

[Gli87] E.P. Glinert. Out of
atland: Towards 3-d visual programming.
In Proc. of the 2nd Fall Joint Computer Conference, pages 292{
299. IEEE Computer Society Press, 1987.

[GMD90] E. P. Glinert, Kopache M.E., and McIntyre D.W. Exploring
the general-purpose visual alternative. J. Visual Languages and
Computing, 1(1):3{40, 1990.

[Gol91] E. J. Goline. Tool review: Prograph 2.0 form TGS systems. J.
Visual Languages and Computing, 2(2):189{194, 1991.

[GT84] E. P. Glinert and S. Tanimoto. Pict: An interactive graphical
programming language. IEEE Computer, 7(25), November 1984.

[Hae88] P.E. Haeberli. ConMan: A visual programming language for in-
teractve graphics. Computer Graphics (Proceedings SIGGRAPH
88), 22(4):103{111, 1988.

[Har95] Jan Hardenbergh. Course 12, VRML: Using 3D to surf the web.
In SIGGRAPH 95, Course Notes. ACM SIGGRAPH, 1995.

[HD92] R.M. Held and N.I. Durlach. Telepresence. Presence: Teleoper-
ators and Virtual Environments, 1(1):109{112, 1992.

[Hee92] Carrie Heeter. Being there: The subjective experience of
presence. Presence: Teleoperators and Virtual Environments,
1(2):262{271, 1992.

[Her80] C.F. Herot. Spatial management of data. ACM Trans. on
Database Systems, 5(4):493{513, 1980.

[Hil92] D.D. Hils. Visual languages and computing survey: Data
ow
visual programming languages. J. Visual Languages and Com-
puting, 3(1):69{101, 1992.

[HKP91] J. Hertz, A. Krough, and R.G. Palmer. Introduction to the The-
ory on Neural Computation. Addison-Wesley, 1991.

BIBLIOGRAPHY 161

[IH87] T. Ichikawa and M. Hirakawa. Visual programming - toward
realization of user-friendly programming environments. In Proc.
of the 2nd Fall Joint Computer Conference, pages 129{136. IEEE
Computer Society Press, 1987.

[IWC+88] D. Ingalls, S. Wallace, Y.-Y. Chow, F. Ludolph, and K. Doyle.
Fabrik { a visual programming environment. In Proc. OOPSLA
'88, pages 176{190, San Diego, 1988.

[Kal93a] Roy S. Kalawsky. The Science of Virtual Reality and Virtual
Environments. Addison-Wesley, 1993.

[Kal93b] R.S. Kalawsky. The science and engineering of virtual reality.
In Virtual Reality International 93, Proceedings of the third an-
nual conference on Virtual Reality, London, April 1993. Meckler,
1993. Not contained in published proceedings.

[KCM90] T. D. Kimura, J. W. Choi, and J. M. Mack. Show and tell: A vi-
sual programming language. In E. P. Glinert, editor, Visual Pro-
gramming Environments: Paradigms and Systems, pages 397{
404. IEEE Computer Society Press, 1990.

[Ken80] A. Kendon. Gesticulations and speech: Two aspects of the pro-
cess of utterance. In R.A. Key, editor, The Relation between
Verbal and Non-Verbal Communication. Mouton, The Hague,
1980.

[Kru90] Myron W. Krueger. Videoplace and the interface of the future.
In Brenda Laurel, editor, The Art of Human-Computer Interface
Design. Addison Wesley, 1990.

[Kru91] Myron W. Krueger. Arti�cial Reality II. Addison Wesley, second
edition, 1991. ISBN 0-201-52260-8.

[Lan91] J.A. Landay. Tools review: Serius - a visual programming en-
vironment. J. Visual Languages and Computing, 2(3):297{303,
1991.

[LCI+88] F. Ludolph, Y.-Y. Chow, D. Ingalls, S. Wallace, and K. Doyle.
The Fabrik programming environment. In Proc. 1988 IEEE
Workshop Visual Languages, pages 222{230. IEEE Computer
Society Press, 1988.

162 BIBLIOGRAPHY

[Lip91] J.S. Lipscomb. A trainable pattern recognizer. Pattern Recogni-
tion, pages 895{907, 1991.

[LKL91] J.Bryan Lewis, Lawrence Koved, and Daniel T. Ling. Dialogue
structure for virtual worlds. In CHI'91 Proceedings. ACM Press,
New York, 1991.

[Loo92a] J.M. Loomis. Distal attribution and presence. Presence: Tele-
operators and Virtual Environments, 1(1):113{119, 1992.

[Loo92b] J.M. Loomis. Presence and distal attribution: Phenomenology,
determinants, and assessment. In SPIE Vol. 1666 Human Vi-
sion, Visual Processing, and Digital Display III, pages 590{595,
1992.

[Lyt95] W. Lytle. Vpla: Visual programming language for animation.
Technical Sketch, SIGGRAPH95, 1995.

[MAB92] K. Meyer, H.L. Applewhite, and F.A. Biocca. A survey of po-
sition trackers. Presence: Teleoperators and Virtual Environ-
ments, 1(2):173{200, 1992.

[McK92] M. McKenna. Interactive viewpoint control and three-
dimensional operations. Computer Graphics, pages 53{56, 1992.
Special Issue on Symposium on Interactive 3D Graphics.

[MCR90] J.D. Mackinlay, S.K. Card, and G.G. Robertson. Rapid con-
trolled movement through a virtual 3D workspace. Computer
Graphics, 24(4):171{176, August 1990.

[MH85] M. Moriconi and D.F. Hare. Visualizing program designs
through PEGASYS. IEEE Computer, 18(8):72{85, 1985.

[Min84] M.R. Minsky. Manipulating simulated objects with real-world
gestures using a force and position sensitive screen. Computer
Graphics (SIGGRAPH Proceedings), 18(3):195{203, 1984.

[Min95] Mark R. Mine. Virtual environment interaction techniques. In
Course 8: Programming Virtual Worlds, SIGGRAPH 95, Course
Notes. ACM SIGGRAPH, 1995.

[Moh88] T.G. Moher. Provide: A process visualization and debugging
environment. IEEE Trans. Software Engineering, SE-14(6):849{
857, 1988.

BIBLIOGRAPHY 163

[MT91] K. Murakami and H. Taguchi. Gesture recognition using recur-
rent neural networks. In CHI'91 Proceedings. ACM Press, New
York, 1991.

[Mye86] B.A. Myers. Visual programming, programming by example and
program visualization: A taxonomy. In Proceedings of CHI'86.
ACM Press, 1986.

[Mye87] B.A. Myers. Creating interaction techniques by demonstration.
IEEE CG & A, pages 51{60, September 1987.

[Mye90a] B. A. Myers. Creating user interface using programming by ex-
ample, visual programming and constraints. ACM Trans. Pro-
gramming Languages and Systems, 12(2):143{177, 1990.

[Mye90b] B. A. Myers. Taxonomies of visual programming and program
visualization. J. Visual Languages and Computing, 1(1):97{123,
1990.

[Naj94] M. Najork. Programming in Three Dimensions. PhD thesis,
University of Illinois at Urbana-Chapaign, 1994.

[NK91] M. Najork and S. Kaplan. The cube language. In Proc. 1991
IEEE Workshop Visual Languages, pages 218{224, Kobe, Japan,
1991. IEEE Computer Society Press.

[NK92] M. Najork and S. Kaplan. A prototype implementation of the
CUBE language. In Proc. 1992 IEEE Workshop Visual Lan-
guages, pages 270{273. IEEE Computer Society Press, 1992.

[NO86] G.M. Nielson and D.R. Olsen Jr. Direct manipulation techniques
for 3D objects using 2D locator devices. In F. Crone and S. M.
Pizer, editors, Proc. 1986 ACM Workshop on Interactive 3D
Graphics, Chapel Hill, NC, October 22-24, pages 175{182. ACM
Press, 1986.

[Ous94] John K. Ousterhout. Tcl and the Tk toolkit. Addison-Wesley,
1994.

[Pat92] Robert Patterson. Human stereopsis. Human Factors,
34(6):669{692, 1992.

[Pat94] H. Patel. ??? Master's thesis, Department of Computer Science,
Queen Mary and West�eld College, University of London, 1994.

164 BIBLIOGRAPHY

[PBS93] B.A. Price, M.B. Baecker, and I.A. Small. A principled taxon-
omy of software visualization. J. Visual Languages and Comput-
ing, 4(3):211{266, 1993.

[PN83] M.C. Pong and N. Ng. Pigs - a system for programming with in-
teractive graphical support. Software - Practice and Experience,
13(9):847{855, 1983.

[Pol] Polhemus, Inc. FastrakR. One Hercules Drive,P.O. Box
560,Colchester, VT 05446,USA.

[PTVM92] J. Poswig, K. Teves, G. Vrankar, and C. Moraga. Visavis -
contributions to practice and theory of highly interactive visual
languages. In Proc. 1992 IEEE Workshop Visual Languages,
pages 155{162, Seattle, WA, 1992.

[PVM94] J. Poswig, G. Vrankar, and C. Moraga. Visavis: a higher-order
functional visual programminmg languages. J. Visual Languages
and Computing, 5(1):83{111, 1994.

[RCM89] G.G. Robertson, S.K. Card, and J.D. Mackinlay. The cogni-
tive coprocessor architecture for interactive user interfaces. In
Proceedings UIST'89, pages 10{18, 1989.

[Rei85] S.P. Reiss. Pecan: Program development systems that sup-
port multiple views. IEEE Trans. Software Engineering, SE-
11(3):276{285, 1985.

[Rei87] S.P. Reiss. Working in the GARDEN environment fo conceptual
programming. IEEE Software, 4(6):16, 27 1987.

[RGR89] S.P. Reiss, E.J. Golin, and R.V. Rubin. Using GELO to visualize
software systems. In Proc. 2nd Annual Symp. on User Interface
and Software Technology (UIST'89), pages 147{157. ACM Press,
New York, 1989.

[Rhe91] Howard Rheingold. Virtual Reality. Secker & Warburg, London,
1991.

[RL84] N. Roussopoloulos and D. Leifker. An introduction to psql: A
pictorial structured query language. In Proc. 1984 IEEE Work-
shop Visual Languages, pages 77{87, 84.

BIBLIOGRAPHY 165

[RMC91] G.G. Robertson, J.D. Mackinlay, and S.K. Card. Cone trees:
animated 3D visualizations of hierarchical information. In Pro-
ceedings of the ACM SIGCHI 91 Conference on Human Factoirs
in Computing, pages 189{194, 1991.

[Rob92] W. Robinett. Synthetic experience: A proposed taxonomy. Pres-
ence: Teleoperators and Virtual Environments, 1(2):229{247,
1992.

[RR92] W. Robbinett and J.P Rolland. A computational model for the
stereoscopic optics of a head mounted display. Presence: Tele-
operators and Virtual Environments, 1(1), 1992.

[Rub91] Dean Rubine. Specifying gesture by example. Computer Graph-
ics (SIGGRAPH '91 Proceedings), 25(4):329{337, 1991.

[RW91] J.R. Rasure and C.S. Williams. An integrated data
ow visual
language and software development environment. J. Visual Lan-
guages and Computing, 2(3):217{246, 1991.

[SAU94] M. Slater, C. Alberto, and M. Usoh. In the building or through
the window? an experimental comparison of immersive and non-
immersive walkthroughs. In Virtual Reality Environments in
Architecture, Leeds 2-3rd November. Computer Graphics Society,
1994.

[SD91] M. Slater and A. Davidson. Liberation from
atland: 3D
interaction based on the desktop bat. In EUROGRAPHICS
'91, pages 209{221. Elsevier Science Publishers B.V. (North-
Holland), 1991.

[She92a] T.B. Sheridan. De�ning our terms. Presence: Teleoperators and
Virtual Environments, 1(2):272{274, 1992.

[She92b] T.B. Sheridan. Musings on telepresence and virtual presence.
Presence: Teleoperators and Virtual Environments, 1(1):120{
126, 1992.

[She93] W.R. Sherman. Integrating virtual environments into the
data
ow paradigm. In Fourth Eurographics Workshop on ViSC,
Abingdon, UK, April 1993.

[Shn83] B. Shneiderman. Direct manipulation: A step beyond program-
ming languages. IEEE Computer, pages 57{69, August 1983.

166 BIBLIOGRAPHY

[Shu85] N. C. Shu. FORMAL: A forms-oriented and visual-directed ap-
plication system. IEEE Computer, 18(8):38{49, 1985.

[Shu86] N.C. Shu. Visual programming langauges. a perspective and
dimensional analysis. In S.-K. Chang, T. Ichikawa, and P. A.
Ligomenides, editors, Visual Languages, pages 11{34. Plenum
Press, New York, 1986.

[Shu88] N. C. Shu. Visual Programming. Van Nostrand Reinhold, New
York, 1988.

[SIG89] SIGGRAPH'89. Virtual environments and interactivity. Com-
puter Graphics, 23(5):7{38, 1989. Panel Proceddings.

[SIG90] SIGGRAPH'90. Hip, hype and hope-the three faces of virtual
worlds. Computer Graphics, pages 10.1{10.29, 1990. Panel Pro-
ceddings.

[Sil] Silicon Graphics, Inc. Webspace. Available from
http://webspace.sgi.com/.

[SLGS92] Chris Shaw, Jiandon Liang, Mark Green, and Yunqi Sun. The
decoupled simulation model for virtual reality systems. In Proc
CHI'92, May 3-7, 1992, pages 321{328, 1992.

[Smi77] D. C. Smith. Pygmailion - A Computer Program to Model and
Stimulate Creative Thought. Birkhauser, Basel, 1977.

[SN93] D. Song and M. Norman. Nonlinear interactive motion control
techniques for virtual space navigation. In Proceedings of IEEE
1993 Virtual Reality Annual International Symposium, VRAIS
'93, Piscataway, NJ., pages 111{117, 1993.

[SP92a] J.T. Statsko and C. Patterson. Understanding and charaterizing
software visualization systems. In Proc. 1992 IEEE Workshop
Visual Languages, pages 3{10, Seattle, WA, 1992.

[SP92b] R. Stiles and M. Pontecorvo. Lingua graphica: A visual language
for virtual environments. In Proc. 1992 IEEE Workshop Visual
Languages, pages 225{227. IEEE Computer Society Press, 1992.

[Spa] Spacetec Imc Corporation. SpaceballR 2003TM . 600 Su�olk
Street, Lowell, MA 01854-3629, USA.

BIBLIOGRAPHY 167

[SS94] A. Steed and M. Slater. A user-de�ned virtual environment dia-
logue architecture. In Proceedings of VRST '94 - Virtual Reality
Software and Technology, pages 87{96. World Scienti�c Publish-
ing Company, 1994.

[SS95] A. Steed and M. Slater. 3d interaction with the desktop bat.
Computer Graphics Forum, 14(2), 1995.

[SS96] A. Steed and M. Slater. A data
ow representation for de�n-
ing behaviours within virtual environments. In Proceedings of
VRAIS'96, pages 163{167. IEEE, IEEE Computer Society Press,
1996.

[SSU93] M. Slater, A. Steed, and M. Usoh. The virtual treadmill: A
naturalistic metaphor for navigation in immersive virtual en-
vironments. In M. G�obel, editor, First Eurographics Workshop
on Virtual Environments, Polytechnical University of Catalonia,
September 7, pages 71{83, 1993.

[SSU94] A .Steed, M. Slater, and M. Usoh. Presence in immersive vir-
tual environments. In Proceedings of the 1st UK Virtual Reality
Special Interest Group Conference, 1994.

[Ste92] J. Steur. De�ning virtual reality: Dimensions determining telep-
resence. Journal of Communication, 42(4), 1992.

[Stu92] David J. Sturman. Whole-Hand Input. PhD thesis, Mas-
sachusetts Institute of Technology, February 1992.

[SU93] M. Slater and M. Usoh. The in
uence of a virtual body on
presence in immersive virtual environments. In Virtual Reality
International 93, Proceedings of the third annual conference on
Virtual Reality, London, April 1993, pages 34{42. Meckler, April
1993.

[SU94a] M. Slater and M. Usoh. Body centred interaction in immersive
virtual environments. In M. Magnenat-Thalmann and D. Thal-
mann, editors, Virtual Reality and Arti�cial Life. John Wiley,
1994.

[SU94b] M. Slater and M. Usoh. Representation systems, perceptual po-
sition and presence in virtual environments. Presence: Teleop-
erators and Virtual Environments, 2(3), 1994.

168 BIBLIOGRAPHY

[SU92] Mel Slater and Martin Usoh. An experimental exploration of
presence. Department of Computer Science, Queen Mary and
West�eld College, University of London, Report, 92.

[SU93] M. Slater and M. Usoh. Presence in virtual environments. In
Proceedings of VRAIS'93, pages 90{96. IEEE, September 93.

[SUS94a] M. Slater, M. Usoh, and A. Steed. Depth of presence in vir-
tual environments. Presence: Teleoperators and Virtual Envi-
ronments, 3(2), 1994.

[SUS94b] M. Slater, M. Usoh, and A. Steed. Steps and ladders in virtual
reality. In Proceedings of VRST '94 - Virtual Reality Software
and Technology, pages 45{54. World Scienti�c Publishing Com-
pany, 1994.

[SUS95] M. Slater, M. Usoh, and A. Steed. Taking steps: The in
uence of
a walking metaphor on presence in virtual reality. ACM Trans-
actions on Computer Human Interaction, 2(3):201{219, 1995.

[Sut65] Ivan E. Sutherland. The ultimate display. In IFIP Congress
Proceedings, volume 2, pages 506{508, 1965.

[Sut68] I. E. Sutherland. A head-mounted three dimensional display. In
Proc. AFIPS Fall Joint Computer Conference, 33, pages 757{
764, 1968.

[Tri88] L.L. Tripp. A survey of graphical notations for program design:
An update. ACM Sigsoft Software Engineering Notes, 13(4):39{
44, 1988.

[USV96] M. Usoh, M. Slater, and T.I Vassilev. Collaborative geometrical
modeling in immersive virtual environments. In M. G�obel, ed-
itor, Proceedings of the 3rd Eurographics Workshop on Virtual
Environments, Monte Carlo, 19-20 February, 1996.

[vRCBF95] F. van Reeth, K. Coninx, S. De Backer, and E. Flerackers. Re-
alizing 3D visual programming environments within a virtual
environment. In F. Post and M. G�obel, editors, EUROGRAPH-
ICS '95, number 14(3) in Computer Graphics Forum. Blackwell
Publishers, 1995.

[VRM96] The virtual reality modeling language speci�cation, version 2.0,
iso/iec wd 14772. Available at http://cosmo.sgi.com/moving-
worlds/spec/index.html, August 4th 1996.

BIBLIOGRAPHY 169

[WAB93] Colin Ware, Kevin Arthur, and Kellog S. Booth. Fish tank
virtual reality. In Proceedings of INTERCHI '93, pages 37{42.
ACM, 93.

[War90] C. Ware. Using hand position for virtual object placement. Vi-
sual Computer, 6(5):245{253, 1990.

[Wat93a] R. Watson. A
exible gesture interface. Technical report, De-
partment of Computer Science, Trinity College, Dublin, 18th
December 1993.

[Wat93b] R. Watson. A survey or gesture recognition techniques. Tech-
nical Report TCD-CS-93-11, Department of Computer Science,
Trinity College, Dublin, 1993.

[Wen92] E.M. Wenzel. Localization in virtual acoustic displays. Presence:
Teleoperators and Virtual Environments, 1(1):80{107, 1992.

[Wex94] Alan Daniel Wexelblat. A feature-based approach to continuous-
gesture analysis. Master's thesis, Massachusetts Institute of
Technology, May 1994.

[WF94] C. Ware and G. Franck. Viewing a graph in a virtual reality
display is three times as good as a 2D diagram. In Proc. 1994
IEEE Symposium Visual Languages, pages 182{183, 1994.

[WG89] D. Weimer and S.K. Ganapathy. A synthetic visual environment
with hand gesturing and voice input. In CHI'89 Proceedings.
ACM Press, New York, 1989.

[WJ88] C. Ware and D.R. Jessome. Using the bat: A six-dimensional
mouse for object placement. IEEE Computer Graphics and Ap-
plications, pages 65{70, November 1988.

[WO90] C. Ware and S. Osborne. Exploration and virtual camera control
in virtual three dimensional environments. Computer Graphics,
24(2):175{183, March 1990.

[WS91] C. Ware and L. Slipp. Using velocity control to navigate 3D
graphical environments: A comparison of three interfaces. In
Proceedings of the Human Factors Society 35th Annual Meeting,
1991.

[Zel92] David Zeltzer. Autonomy, interaction and presence. Presence:
Teleoperators and Virtual Environments, 1(1):127{132, 1992.

170 BIBLIOGRAPHY

[Zha93] Rui Zhao. Incremental recognition in gesture-based and syntax-
directed diagram editors. In INTERCHI'93 Proceedings. ACM
Press, New York, 1993.

[Zim85] T.G. Zimmerman. Optical
ex sensor. US Patent 4,542,291,
September 1985.

[ZL87] T.G. Zimmerman and J. Lanier. A hand gesture inteface device.
In Proceedings of SIGCHI/GI. ACM Press, New York, 1987.

[ZL91] T.G. Zimmerman and J. Lanier. Computer data entry and ma-
nipulation apparatus and methods. US Patent 4,988,981, Jan-
uary 1991.

