
Building and Supporting a Large-Scale
Collaborative Virtual Environment

Anthony Steed

Department of Computer Science, University College London

London, United Kingdom

Emmanuel Frécon

Swedish Institute of Computer Science,

Stockholm, Sweden

Abstract

The COVEN project's London Travel application demonstrates
several techniques that enable large-scale virtual environments.
By large-scale we mean both geometrically complex
environments and support for many simultaneous participants in
the world. The demonstrator is concerned with travel to a virtual
model of London, where participants can plan routes, investigate
tourist information and meet with fellow travellers or guides. In
this paper we discuss how the Distributed Interactive Virtual
Environment (DIVE) platform has been extended to meet the
application requirements. In particular we shall discuss the
technical problems involved in maintaining and rendering a scene
database many times larger than one might usually encounter.

1 Introduction

Travel can be a stressful experience, and it is an activity that is difficult to prepare for in
advance. Although maps, routes and landmarks can be memorised beforehand, travellers
do not get much sense of the spatial layout of the city and can easily get confused when
they arrive. There is little doubt that virtual reality can assist in such situations by, for
example, providing walkthroughs of virtual cityscapes to effect route learning.

For this application we have constructed a model of the centre of London covering
160 km2. We have added several services that might aid the traveller such as simulations
of public transport, data visualisation services and conferencing tools. The underlying

geometric model is automatically generated from 2D data, so although its geometry is
roughly correct, the texture information on the side of the buildings is not. What is
important for our purposes is that wherever the traveller strays, there is at least some
representation of the city and that this representation is at least believable for someone
unfamiliar to the area. This is important in navigation training exercises where it should
not be immediately apparent to the subject that they are lost because the scenery is
petering out.

The application is built on the DIVE system from the Swedish Institute of Computer
Science [10]. The development of this platform1 and the construction of this application2

were two of the main goals of the COVEN project [16]. COVEN extensions to the DIVE

platform include better support for real-time audio and video, broader file format
support, collaboration tool development, human representation and scalability extensions
for the renderer and database.

2 Related Work

There are many examples of models of urban environments in the computer graphics
literature. Such applications have obvious applications in local government (urban
planning), training (driving simulators), data visualisation (air pollution data) and so on.
Work can be typified by two systems, the UNC Walkthrough environment [3] that
supported real-time experience of complex building interiors and the Virtual LA system
that support a large urban space with gross building-level detail [1].

Such applications are similar in that they require large amounts of geometric
information. They are also similar in that from a particular viewpoint there will be a high
depth of complexity and there is usually large amounts of occlusion between regions in
the model.

Models of building interiors lend themselves to analytic determination of visibility
through identification of cells and portals [3]. Essentially within a building environment
it is possible to identify a graph of cells, where adjacency in the graph indicates that the
two cells are mutually visible, i.e. there is a portal. Once such a graph has been drawn,
visibility between two cells can be determined by traversing the graph between the cells,
checking that all the intervening portals are visible.

Such analytic solutions are difficult to compute in city models, since portals do not
exist, and occlusion between regions is generated by an accumulation of intervening
buildings. A more appropriate technique in this case is not to pre-compute what is
visible, but to pre-compute what is likely to obscure distant objects [7]. In a city model
this is appropriate since a few nearby buildings can obscure large sections of the city.

1 An experimental version of DIVE, 3.3x, incorporating some of the techniques described in this

paper in available at http://www.sics.se/dive
2 Cut-down versions of the London Travel Demonstrator for DIVE and VRML are available at

http://www.cs.ucl.ac.uk/research/vr/Coven/Model

The primary use of visibility techniques is to assist us in determining which parts of
the models need to be sent to the graphics pipeline. They have a second role when the
model of the environment is too large to fit into memory. The basic technique for
supporting a large model would then be to partition it into regular tiles, and, for example,
only load in the nearest 9 tiles. If a visibility solution is available then it is possible to
load only those parts that are visible or likely to become visible [11,12]. In scenes with
little occlusion and thus large numbers of visible objects, more sophisticated techniques
are required [2].

The London Demonstrator is unique since it combines several constraints:
♦ In general there are many potentially dynamic objects with high levels of

importance to the user. In particular there will be avatars of other users. Many
large model rendering systems assume that the user simply wants to view the
model.

♦ Interaction with model and other participants requires a consistent high frame-
rate.

♦ There are a variety of model structures including both dense interiors and sparse
exteriors.

♦ The platform supports VRML1.0 and partial VRML97 formats and thus we must
consider models without clean structure and without the luxury of an
identification of cells and portals.

♦ The platform supports multiple users and uses a shared scene graph approach to
distribution. One implication of this is that any supporting structures for
rendering or collision detection must be parallel to the original scene graph.
Memory being a scarce resource, they must be kept fairly lightweight.

3 Building the Application

3.1 Map Model

The basic element of a travel demonstration must be a representation of the destination.
Our model of London comprises a 16x10km segment of the centre of London that is
generated from 2D vector, building height and 2D image data from The GeoInformation
Group's, Cities Heights data set3. The resulting model consists of about 160 MB of
VRML data, not including texture map data.

The original maps are stored as DXF files with several layers. We are primarily
interested in building outlines, roads centre and building spot height layers. The
conversion stage consists of the following major steps [19]:

• Identifying and repairing building outlines

3 Cities Revealed, The GeoInformation Group, http://www.crworld.co.uk,

• Building extrusion and roof-fitting

• Identifying and connecting road centre lines

• Fitting roads between buildings

• Creating pavements
Each building is composed of two or three layers, entrance, middle and optional

upper level and each has a roof. The entrance and upper level are tiled laterally, but are
repeated only once vertically and have a fixed height. The centre layer is tiled and/or
slightly stretched to fill the intervening gap. Textures are grouped together into matching
sets and the set to apply to a particular building is chosen by a few simple heuristics:
buildings with a small footprint are more likely to be brick, tall buildings are likely to be
office blocks, and so on. The resulting model is stored as a VRML1.0 [4] model in 160
1km square tiles, with each tile being built upon a segment of the Cities Revealed aerial
photograph for central London. Figure 1 shows an example view of the model and
Figure 2 shows an overview of the model extent.

Figure 1: Typical snapshot of the model.

Figure 2: London from the south-west.

3.2 Other Databases

Given that the application is for travel training, there are a few “target” destinations that
have been modelled to a higher degree of accuracy by hand. One of our target
destinations is the UCL Computer Science Department, and there are models of the
buildings on campus, and a detailed model of the interior of computer science. Dealing
with this range of scale is obviously an issue when composing models.

3.3 Other Services

The main services we have added to make this a useful travel service include simulation
of transportation services such as the London Underground and Heathrow Express, and
multimedia and presentation services. The conference and multimedia facilities include a
number of collaboration tools such as virtual whiteboards, overhead projectors, virtual
notepads and calendar facilities [8]. These are represented in a realistic manner within
conference rooms and individual conferences can be made public or private with DIVE's
audio and event scoping capabilities.

The final service, the visualisation service, comprises all the tools that extend the
realistic metaphor of the city with more abstract data visualisation tools. The main tool is
a tourist information graphing tool, that allows multiple participants to view data about
hotels, pubs and theatres and create a personal annotated city map which they can then
carry around the city model, or even print out and take with them on their actual visit.

The London Demonstrator serves as a comprehensive demo of the advanced
collaborative virtual environment platform and services that the COVEN project has
been developing. With this demonstrator we show both an interesting and useful CVE
application and a mature CVE platform that can provide the level of service required for
tomorrow's demanding applications.

4 Supporting the Application

During the construction of this application we have striven to build scalability
techniques that are quite general and will apply equally well across different applications
and different platforms. In particular we have not assumed anything about the layout of
the model, nor have we tuned algorithms for a particular platform. The application as
built runs at an acceptable speed on many platforms, from SGI O2s through to Onyx,
though of course, the average amount of visual detail is greater for the latter. This has
meant that we have had to avoid certain techniques such as static level of detail, and
certain types of visibility pre-processing that can only be optimised for a particular
platform.

4.1 Database Support

4.1.1 Tile Paging

Given the size of the base model, only a small portion can be stored in memory or
rendered at one time so it must be stored in paged tiles. The tiling provides a natural
scoping of world events since tile proximity can be used as a gross indication of mutual
awareness. Also, the tiles themselves are static objects in the environment since we do
not expect the buildings themselves to be changed, or at least not very frequently.

These types of consideration lead to the development of a new world structuring
technique called holders. A holder is an unsynchronised portion of the scene graph that
is not loaded through the world database mechanism but must be loaded explicitly by
each process from a URL or file. This enables scaleable virtual worlds since events that
are generated within the scene-graph below the holder node are not distributed to other
participants. This does not mean that these portions of the scene are static, since, as
detailed in [9], events can still be distributed at a higher level of the scene graph and
local changes can be propagated down into the holder. Such high-level events can
encapsulate complex behaviour and we have used them for this purpose in a number of
situations.

For this demonstration, each map tile is placed under a separate holder. The holders
are loaded when the user collides with a bounding sphere. Since this behaviour is
scripted in DIVE/TCL more sophisticated look-ahead paging could be performed.
Individual tiles are loaded incrementally in order to maintain a constant frame-rate by
not locking out the rendering process. Holders are also used in within buildings where
large areas of occlusion occur as a first, crude visibility partitioning (see Section 4.2).

4.1.2 Geometric Optimization

VRML1.0 is a verbose ASCII file format, and parsing and constructing an object
hierarchy is thus a fairly slow process. We have tackled this by exploiting a new facility
within DIVE for serialising the internal object store4. A binary DIVE file is approximately
30% of the size of the equivalent VRML1.0 file, plus it has the advantage of parsing
straight into the native object format, so loading is approximately 10 times faster.

During the binary conversion process, we can perform other transformations on the
scene objects. For example, VRML1.0 describes polygons with the IndexedFaceSet
node. This node supports very general unstructured polygon sets, and it is usually
necessary to optimise the resulting polygon set to get best performance within the
renderer. Many OpenGL accelerators are optimised to support very quick rendering of
long triangle strips [17]. A VRML browser would have to analyse the IndexedFaceSet

4 Binary compilation is not compulsory, but since it does speed up loading considerably, we have

created a build procedure to convert the whole London model. This takes approximately 90
minutes on a SGI High Impact workstation.

node to check whether the triangles could be described as strips, and then re-arrange its
internal representation of those polygons. Such analysis takes considerable time to do
reasonably, so we perform it at the binary conversion stage, and convert the polygon sets
to triangle strip sets wherever possible. During this stage we also do some hierarchy re-
arrangement in order to support culling techniques.

4.2 Rendering Support

The standard DIVE renderer follows a very simple scheme (see Figure 3). The hierarchy
is traversed in depth first order using spherical bounding volume culling. When an entity
containing a level of detail (LOD) is encountered a simple range decision is made and
then the geometry is passed to OpenGL.

Discrete
LOD

Select

Render
Object

View
Volume

Cull

DIVE Hierarchy Visible Objects LOD Objects

Figure 3: Standard DIVE Renderer.

With recent renderer and model optimisations we are already seeing significant (1.5-
2.5 times) improvement in frame rate in the COVEN version of DIVE over previous
publicly available versions (DIVE 3.2 and earlier). This is effected by better culling
techniques, triangle-strip objects and on demand OpenGL list compilation. These are
supported by the off-line methods for hierarchy re-arrangement and mesh and triangle
strip optimisation (see Section 4.1.2).

However the London model itself is massive, and given that from any viewpoint
many hundreds of thousands of polygons maybe seen, the standard renderer can take
several seconds to render a frame5. The use of static LODs is inadequate in order to
provide a constant frame-rate. LOD is usually described in terms of a set of possibly
distance ranges from which a selection can be made at run-time. Although a selection
can correspond to a null geometry, the ranges can not be created so that from an
arbitrary viewpoint on an arbitrary machine a target rendering time is met. In general
practice a minimum platform and minimum frame-rate would be decided, and the LOD
ranged tuned to that platform. However in our case, with a faster machine we do not
want faster frame-rates, we want more of the model to be rendered.

We have experimented with renderers that aim to give a constant frame-rate
experience so that visual continuity can be maintained. In the simplest version, we
optimise the depth of a software far clipping plane so that a frame-rate target is met. This

5 In fact it takes a SGI Onyx2 with Infinite Reality 2 graphics and sufficient memory around 8

seconds to draw the complete 160 km2 model.

is done by simply computing the distance to objects during scene traversal. When the
rendering target is over-run the clipping plane is rapidly brought nearer to bring the
frame-rate under control. When the target is met the clipping plane is slowly moved
outwards. The change in depth is damped so that the frame-time does not oscillate and
objects do not pop on and off. In a more advanced version, we incrementally render the
scene if the viewer is not moving, as shown in Figure 4.

Figure 4: Incremental rendering of the model (after 100ms and 1s respectively).

To assist with the incremental renderer, the DIVE database is structured in a k-D tree
[5] so that a very rapid front to back ordering can be derived. In order to create a
consistent picture it is necessary to render in three stages per frame: first the background
is progressively painted in with all static objects and the scene image is stored. Secondly
depth buffer writing is disabled and all moving objects are drawn and the resulting
image is shown to the user. Finally the image without the moving objects is restored to
the off-screen buffer in preparation for another frame. In this manner it is possible for
moving objects including other avatars to be correctly depth buffered against the rest of
the scene.

Clear

Buffer

Draw
Static

Objects

Restore
Buffers

Draw
Moving

Objects

Save
Buffers

If static object
or eye moves

If eye
stationary

Figure 5: Approach for Incremental Rendering.

For the densely populated interior areas of the model, specifically the Pearson
building of UCL, we have integrated a few crude visibility techniques. The model as
created is not suitable for computed visibility solutions such as those developed by Airey
[3] since the model is not structured with the required identification of cells and portals.
However it is very easy to identify large areas of mutual occlusion such as separate
floors and groups of rooms by hand. We have integrated tools into DIVE itself that allow
objects to be grouped together by hand and identified as “cells”. These cells can be
turned on or off depending on the user's location using the subjective view capability
within DIVE [18]. Although the resulting visibility relationships are much more
conservative than an analytic solution, it is quick and simple for the scene author to
describe, and is more generally applicable to unstructured geometric models.

5 Discussion

5.1 Scalability

The two primary extensions described in this paper, holders and constant-frame rate
rendering have been essential in enabling the London Travel application. Previously it
was not possible to run such a large and complex application within DIVE and it is our
belief that no other general CVE platform would support such an application and still
retain the ability to support groups of participants.

We have successfully used the application in a series of network trials involving
UCL, SICS, University of Nottingham and Lancaster University. Results have been
encouraging. Whereas in previous trials we had to radically cut down the amount of
geometry in the scene in order to allow it to be shared, we can now run with the city
model, the full interior model and the full set of simulations and tools6. Furthermore,
data is not distributed before the trial and is loaded as required through the standard
DIVE database, or through holders as required.

In trials with eight people, two at each site, the application has been usable on SGI
O2s with 128 MB of memory despite the high volume of position event traffic and
accompanying audio. The frame rate has usually been tied to between 8-10 frames a
second.

6 Note that since not all COVEN partners have licensed the full city model data, not all trial

participants can see the complete city. We have hand created a local area model for public
distribution.

5.2 Extensions

5.2.1 Level of Detail

Currently we only use LOD as an indication of acceptable visible error and not as a
technique to balance the frame rate. We have been experimenting on two aspects of
LOD and plan to incorporate these into the base platform in the next few months.

The most common level of detail technique simply allows the renderer to choose
between a fixed number of representations of an object with differing rendering costs.
One major problem of such a technique is that the switch from one level to another
might be noticeable. One way around this is to use continuous level of detail, where a
model can be smoothly morphed between low and high levels of detail [13]. We have an
implementation of such a scheme that allows for compact storage.

The second aspect that we have been looking at is level of detail control. In a
situation where there is a constant frame rate, the problem can be considered as
distributing a rendering “budget” over a set of objects with differing importances to the
final visible image [15,14]. Such a technique will remove the need of a moveable far
clipping plane that culls all objects beyond a certain distance.

5.2.2 Visibility

Given the nature of the models we are encountering, an obvious extension would be to
support one or more visibility culling techniques. However there are two main problems
with these for a general system: variation in model structure and pre-processing
requirements.

The two most relevant visibility approaches are cells, portals and pre-computed
visibility graphs for interior scenes, and occluder selection for exterior scenes (see
Section 2). Although we have incorporated simple versions of such visibility techniques
in a explicit manner (see Section 4.2) neither of these general approaches is uniformly
applicable in our models since we have both interior and exterior space, and, perhaps
more importantly, we have boundaries between the two types of space. Although the use
of one or the other algorithm could easily be scoped to regions within the model, it
would be difficult to support visibility from, say, a building interior out through a
window to an exterior street scene. Pre-processing requirements for such a model would
be quite onerous. In such a large model, storing a visibility graph would be
problematical given its size. It is also not obvious how one would store such a graph in a
tiled manner so that it could be paged in and out as the relevant part of model was paged
in and out. Pre-selection of occluders is a promising technique since it is locally
determined.

6 Conclusions

We have been successful in supporting a large-scale application on a platform that
supports groups of users. The London Travel demonstrator is a complex application,
both in terms of geometry and functionality, and this complexity constrains the use of
established techniques for visibility pre-processing and model management. What we
have done is migrate the control of model management and visibility into the scene
scripting language, which has given us a degree of flexibility and generality that enables
scalable applications.

The challenge we are now facing is incorporating other extensions such as occlusion
culling for the streets, visibility graphs for building interiors, image based rendering and
continuous level of detail control into a single renderer in a general way so that they can
be utilised by other applications.

7 Acknowledgments

This work is sponsored by the EU ACTS Programme COVEN (ACTS N. AC040) and
we would like to thank the members of that project that have contributed to this
demonstrator.

8 References

1. Chan R., Jepson W., Friedman S. Urban Simulation: An Innovative Tool for Interactive
Planning and Consensus Building. Proceedings of the 1998 American Planning Association
National Conference, Boston, MA, April 1998, pp. 43-50. See also
http://www.ust.ucla.edu/ustweb/ust.html

2. Aliaga D. Cohen J., Wilson A., et al. MMR: An Interactive Massive Model Rendering
System Using Geometric and Image-Based Acceleration. ACM Symposium on Interactive
3D Graphics, 1999, pp. 199-206.

3. Airey J., Rohlf J., Brooks F. Towards Image Realism with Interactive Update Rates in
Complex Building Environments. ACM Symposium on Interactive 3D Graphics, 1990, pp.
41-50.

4. Bell G., Parisi A., Pesce M. The Virtual Reality Modeling Language Version 1.0, November
1995. Available at http://www.web3d.org/VRML1.0/vrml10c.html

5. Bentley J.L., Multidimensional Binary Search Trees Used for Associative Searching.
Communications of the ACM, 18(9), September 1975.

6. Bourdakis V. The Future of VRML on Large Urban Models, UKVRSIG97, Brunel
University, 1st November, 1997. Electronic version available at
http://www.brunel.ac.uk/depts/mes/Research/Groups/vvr/vrsig97/proc.htm

7. Coorg S., Teller S. Real-Time Occlusion Culling for Models with Large Occluders. 1997
Symposium on Interactive 3D Graphics, ACM SIGGRAPH, 1997, pp. 83-90.

8. Frécon E., Avatare-Nöu A. Building Distributed Virtual Environments to Support
Collaborative Work" ACM Symposium on Virtual Reality Software and Technology
(VRST'98), Taiwan, 1998

9. Frécon E., Smith G. Semantic Behaviours in Collaborative Virtual Environments,
Proceedings of Eurographics Workshop on Virtual Environments (EGVE’99), Vienna,
Austria, 31st May-1st June 1999, Springer Computer Science, pp. 95-104.

10. Frécon E., Stenius M., DIVE: A Scaleable network architecture for distributed virtual
environments, Distributed Systems Engineering Journal (special issue on Distributed Virtual
Environments), Vol. 5, No. 3, Sept. 1998, pp. 91-100. See also http://www.sics.se/dive

11. Funkhouser, T.A., Sequin, C.H., Teller, S.J. Management of Large Amounts of Data in
Interactive Building Walkthroughs, Proceedings of 1992 Symposium on Interactive 3D
Graphics, Computer Graphics, pp. 11-20, ACM Press.

12. Funkhouser T. Database Management for Interactive Display of Large Architectural Models,
Graphics Interface '96, Canadian Human-Computer Communications Society.

13. Hoppe H. Progressive Meshes. Proceedings of SIGGRAPH 96. ACM SIGGRAPH pp. 99-
108

14. Howell J., Chrysanthou C., Steed A., Slater M. A Market Model for Level of Detail Control.
Accepted for Virtual Reality Software and Technology (VRST), 1999.

15. Mason A., Blake E. Hierarchical Level of Detail in Computer Animation. In Computer
Graphics Forum 16(3), Proceedings of Eurographics '97, pp. 191-199.

16. Normand, V. et al. The COVEN Project: Exploring Applicative, Technical and Usage
Dimensions of Collaborative Virtual Environment, Presence: Teleoperators and Virtual
Environments, 8(2), 1999, MIT Press.

17. Silicon Graphics. OpenGL on Silicon Graphics Systems, Insight Guide
18. Smith G. and Mariani J. Using Subjective Views to Enhance 3D Applications. ACM

Symposium on Virtual Reality Software and Technology (VRST '97). ACM Press. Swiss
federal Institute of Technology (EPFL), Lausanne, Switzerland, September 1997, pp. 139-
146.

19. West J. MSc Thesis, Department of Computer Science, University College London.

